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Abstract. The classical Baldwin-Lachlan characterization of uncount-
ably categorical theories is known to fail in continuous logic in that not
every inseparably categorical theory has a strongly minimal set. Here
we investigate these issues by developing the theory of strongly mini-
mal sets in continuous logic and by examining inseparably categorical
expansions of Banach space.

To this end we introduce and characterize `dictionaric theories,' theo-
ries in which de�nable sets are prevalent enough that many constructions
familiar in discrete logic can be carried out. We also introduce, in the
context of Banach theories, the notion of an `indiscernible subspace,'
which we use to improve a result of Shelah and Usvyatsov [29]. Both of
these notions are applicable to continuous logic outside of the context
of inseparably categorical theories.

Finally, we construct or present a slew of counterexamples, including
an ω-stable theory with no Vaughtian pairs which fails to be inseparably
categorical and an inseparably categorical theory with strongly minimal
sets in its home sort only over models of su�ciently high dimension.

1. Introduction

The classical Baldwin-Lachlan characterization of uncountably categorical
theories gives detailed structural information about such theories. In par-
ticular, each such theory has a strongly minimal set de�nable over its prime
model, and every model of the theory is `controlled' by any such strongly
minimal set. This structural picture fails in continuous logic in the context
of inseparably categorical theories. For example the theory of in�nite dimen-
sional Hilbert spaces (IHS) does not contain anything resembling a strongly
minimal set.

Nevertheless, there is a meaningful notion of strongly minimal sets in con-
tinuous logic which is a non-trivial generalization of the notion in discrete
logic. In this paper we will develop this machinery and examine insepara-
bly categorical theories which do contain strongly minimal sets, as well as
the known class of structures�expansions of Banach space�which do not
contain strongly minimal sets.
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1.1. Overview. After preliminary material in Section 2, Section 3 deals
with a few mild variations on the notion of Vaughtian pairs in continuous
logic. We show that none of them can occur in an inseparably categorical
theory.

Section 4 deals with the issue of handling de�nable sets in continuous
logic. We introduce and characterize a niceness condition that ensures the
prevalence of de�nable sets, called `dictionaricness,' All discrete theories are
easily seen to be dictionaric, but a continuous theory may fail to be. We
show that in dictionaric theories many of the manipulations which are trivial
in discrete logic can be performed, or at least approximately performed.
For example, the intersection of two de�nable sets can in general fail to be
de�nable, but in a dictionaric theory given de�nable sets D and E there
are arbitrarily small perturbations E′ of E such that D ∩ E′ is de�nable
(Corollary 4.9). To end the section we show that all ω-stable theories (and
more generally totally transcendental theories) are dictionaric, despite the
fact that superstable theories may fail to be.

Section 5.1 deals with (strongly) minimal sets in continuous logic. The
general development of strongly minimal sets in continuous logic resembles
their development in discrete logic, so much so that some of our proofs follow
Tent and Ziegler [30] closely, but there are a few important di�erences:

• The de�nition needs to be slightly stronger than the most obvious
direct translation��Every de�nable subset is either compact or co-
pre-compact.��which does not work. There are two problems with
this de�nition:
� It might be that the set in question has many distinct non-
algebraic types but not enough de�nable subsets to distinguish
between them.

� A strongly minimal set can have a de�nable subset that is nei-
ther compact nor co-pre-compact.

• It is not clear whether or not the property of having no Vaughtian
pairs is su�cient to ensure that any minimal set is strongly minimal
in an arbitrary theory. There are two stronger hypotheses, both sat-
is�ed by ℵ1-categorical theories and both of which are strong enough
to ensure that any minimal set is strongly minimal. In particular, if
T is dictionaric and has no Vaughtian pairs or if T has no open-in-
de�nable Vaughtian pairs, then any minimal set is strongly minimal.
• The proof that minimal sets over ℵ0-saturated structures are strongly
minimal works without much modi�cation, but in continuous logic
sometimes we need to work with approximately ℵ0-saturated struc-
tures. We show that minimal sets over approximately ℵ0-saturated
structures are strongly minimal as well. (See [7, Def. 1.3] for the
de�nition of approximately ℵ0-saturated.)
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• In general, algebraic closure in continuous logic does not have �nite
character�only countable character and approximate �nite character�
but in strongly minimal sets algebraic closure does have �nite charac-
ter. This is notable because there are ℵ1-categorical theories in which
acl is a pregeometry that does not have �nite character, namely IHS.
• In discrete logic, if p is a strongly minimal type based on some set
A, then a corresponding strongly minimal set is de�nable over A.
In continuous logic, if A is not a model, we need to invoke an extra
assumption and work with a weaker notion than strongly minimal
set.
� If T is dictionaric, then for any strongly minimal p based on some
set A, there is an A-de�nable `approximately strongly minimal
set' corresponding to p.

� Conversely (with no assumptions about T ), if D is an approx-
imately strongly minimal set de�nable over A, then it corre-
sponds to a strongly minimal type based on A.

� If D is an approximately strongly minimal set de�nable over A
and M ⊇ A is any model, then there is a (D(M)∪A)-de�nable
strongly minimal set E ⊆ D corresponding to the same strongly
minimal type (again with no assumptions about T ).

� Every known example of an A-de�nable (strongly) minimal set
has an A-de�nable (strongly) minimal imaginary quotient, but
it is not clear that this is always true.

• In discrete logic if Sn(M) is topologically scattered (if T is totally
transcendental, for instance), then every non-algebraic open set con-
tains a type that is minimal over M. In continuous logic the correct
topometric analog of topologically scattered (i.e. CB-analyzable [2])
is not strong enough to guarantee the existence of any minimal or
strongly minimal types. In particular, there is an ℵ1-categorical the-
ory that does not even interpret a strongly minimal set, namely IHS.

Each of these di�erences with the exception of the last one is either a mild
technical issue or the fortuitous lack of a potential mild technical issue. The
last di�erence is the most important one in that not every inseparably cate-
gorical theory is in some way `based on' a strongly minimal set.

Section 5.2 starts with a partial generalization of the Baldwin-Lachlan
characterization to the context of continuous logic. Subsections 5.2.2 and
5.2.3 presents a couple of common conditions that ensure the presence of
minimal sets in an ω-stable theory. Namely, theories with a locally compact
model have minimal sets, and ultrametric theories have minimal imaginar-
ies. We also characterize the relationship between ultrametric theories and
theories with totally disconnected type spaces.
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We continue Section 5.2 by presenting a counterexample to the most direct
translation of the classical Baldwin-Lachlan classi�cation, as well as exam-
ples of inseparably categorical theories that do have strongly minimal sets
in their home sort, but only over models of su�ciently high dimension.

Section 6 focuses on inseparably categorical expansions of Banach space
(or Banach theories). We present a novel proof that in�nite dimensional
Hilbert spaces do not interpret any non-trivial locally compact theories and
in particular any strongly minimal theories, a fact which is implicit in [4].
We also introduce the notion of an `indiscernible subspace' to present an
improvement of the results of [29], after developing the relevant machin-
ery. Following an observation regarding an application of dictionaricness to
inseparably categorical Banach theories, we present some relevant counterex-
amples, including one which resolves a question of [29].

2. Preliminaries

For the general formalism of continuous logic and the majority of the
notation used here, see [5]. A divergence that we should remark upon is that
in the present work we will not bother with the distinction between formulas
and de�nable predicates.

Convention 2.1. A (real valued) formula in the variables x̄ and over the
parameters A is a continuous function from Sx̄(A) to R. We may say that
a formula is I-valued for some interval I ⊆ R (such as [0, 1] or [−1, 1]) if we
wish to highlight an intended restriction on the range of the formula. For
any formula ϕ(x̄) over the parameters A and any tuple of elements b̄ of the
same sorts as x̄, we understand ϕ(ā) or ϕM(ā) to be ϕ(tp(b̄/A)), where M
is some model containing Ab̄.

Note that in general a formula may depend on up to countably many
parameters (in the sense that if ϕ : Sn(A)→ R is a formula, then there is a
countable A0 ⊆ A such that ϕ factors through the natural restriction map
from Sx̄(A) to Sx̄(A0)).

Convention 2.2. In this paper when we refer to a discrete metric or metric
space, we mean a uniformly discrete metric or metric space (i.e. one for which
there is an ε > 0 such that for any distinct x and y, d(x, y) > ε).

The discrete metric refers to the metric on a given set for which any two
distinct x and y have d(x, y) = 1.

2.1. Notation. Here are the notational conventions used in this paper that
are not found in [5].

Notation 2.3. Let (X, d) be a metric space. Let x ∈ X, A ⊆ X, and ε > 0.

(i) B≤ε(x) = {y ∈ X : d(x, y) ≤ ε}
(ii) B<ε(x) = {y ∈ X : d(x, y) < ε}
(iii) d(x,A) = inf{d(x, y) : y ∈ A}
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(iv) Given B ⊆ X, the Hausdor� distance between A and B, written
dH(A,B), is max{supa∈A d(a,B), supb∈B d(b, A)}.

(v) A≤ε = {y ∈ X : d(x,A) ≤ ε}
(vi) A<ε = {y ∈ X : d(x,A) < ε} =

⋃
y∈AB<ε(y)

(vii) #dcA, the metric density character of A, is the minimum cardinality
of a metrically dense subset of A.

(viii) We say that B ⊆ X is (>ε)-separated if d(x, y) > ε for every pair of
distinct points x, y ∈ B.

(ix) #ent
>εA = sup{|B| : B ⊆ A and B (>ε)-separated}. This quantity is

called the (> ε)-metric entropy of A.1 (Note that this supremum is
not always attained.)

(x) A =
⋂
ε>0A

<ε is the metric closure of A.

dH(A,B), which can be equivalently de�ned as inf{ε > 0 : A ⊆ B<ε, B ⊆
A<ε}, is also called the Hausdor� metric, although note that in general it is
only a pseudo-metric unless restricted to closed sets.

Notation 2.4. In situations in which both a topology and a metric are
relevant (such as in a type space), we will use clA to represent the topological
closure, as opposed to A, the metric closure. The intended meaning will also
be reinforced by context and occasionally explicit reminders. We will use
intA to represent the topological interior. We do not need notation for
metric interior, as we never use the concept.

If we need to specify a closure or interior relative to some subspace, we
will use subscripts. clB A is the closure of A in the subspace B, for instance.

We take the <ε and ≤ε operators to bind more tightly than in�x and pre�x
operators, so intA<ε is int(A<ε) and B ∪ C≤δ is B ∪ (C≤δ).

Notation 2.5. If Sn(A) is a type space and ϕ is an A-formula with free
variables amongst x0, . . . , xn−1, we will let Jϕ < εK denote the set of types
p ∈ Sn(A) satisfying p |= ϕ < ε. The type space in question will be clear
from context. Likewise for Jϕ ≤ εK, Jϕ > εK, Jϕ ≥ εK, Jϕ = εK, and
Jϕ 6= εK. If it is necessary to denote parameters we may write something
like Jϕ(−, a) < εK to avoid specifying free variables. We may also write
something like Jε ≤ ϕ < δK to mean Jϕ ≥ εK ∩ Jϕ < δK.

If M is a structure and @A ∈ {<,>,≤,≥,=, 6=}, then Jϕ(M) @A εK
is the set of tuples a ∈ M such that M |= ϕ @A ε. Expressions such
as Jε ≤ ϕ(M) < δK have the obvious interpretation. If F is an arbitrary
(typically closed) subset of the type space Sn(A), then we will use F (M)
similarly.

To avoid confusion with the established logical roles of ∧ and ∨, we will
avoid using this notation for min and max.

1There is some inconsistent usage of the term `metric entropy' in the literature. Some-
times it is the logarithm of our #ent

>εA or some similarly de�ned quantity.
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2.2. Basic Facts and De�nitions.

De�nition 2.6. A zeroset is a set (of types) of the form Jϕ = 0K.

Sets of the form Jϕ ≤ ψK, Jϕ ≥ ψK, and Jϕ = ψK can be equivalently
expressed as zerosets and will be freely referred to as such. Note that a
subset of a given type space is a zeroset if and only if it is a closed Gδ set,
by Urysohn's lemma.

De�nition 2.7. A zeroset F ⊆ Sn(A) is algebraic if for every M ⊇ A, F (M)
is metrically compact.

The following lemma is a way to verify the algebraicity of a given zeroset
in a single model.

Lemma 2.8. If F and G are M -zerosets such that F ⊆ intG and G(M) is
metrically compact, then F is algebraic.

Proof. Find a formula ϕ(x; a) with a ∈ M such that F ⊆ Jϕ(−; a) < 1
3K ⊆

Jϕ(−; a) ≤ 2
3K ⊆ intG. For each ε > 0 there is an nε < ω such that

Jϕ(M; a) ≤ 2
3K contains a (>ε)-separated set of cardinality nε, but does not

contain one of cardinality nε + 1, so in particular if we consider the sentence

χ = inf
x0,...,xnε

max
i<j≤nε

max

{
1

ε
(ε ·− d(xi, xj)) ,

3

2
min

{
ϕ(xi; a),

2

3

}}
,

we have M |= χ = 1. This will be true of any elementary extension of M
as well, so if we assume that in some N � M we have that F (N) is not
metrically compact, then for some ε > 0 there is an in�nite (>ε)-separated
set of elements in F (N), but this would imply that N |= χ < 1 since any
element of F (N) is also an element of Jϕ(N; a) < 1

3K. This is a contradiction,
so F must be algebraic. �

De�nition 2.9.

(i) Given a closed set F ⊆ Sn(T ), a closed set Q ⊆ F is de�nable relative
to F (or relatively de�nable in F , or de�nable-in-F ) if for every ε > 0
there is an open-in-F set U such that Q ⊆ U ⊆ Q<ε.

(ii) A point p ∈ Sn(T ) is d-atomic if {p} is a de�nable set. It is relatively
d-atomic in F if {p} is a relatively de�nable subset of F .2

Note that we have de�ned `relatively de�nable' sets in a way that is distinct
from a common understanding of the notion in discrete logic, namely those
subsets of a given type-de�nable set (i.e. a given closed set) which are the
intersection of it with a de�nable set (i.e. a clopen set). These two de�nitions
are equivalent in discrete logic, but are not equivalent in continuous logic.
We will show in Proposition 4.6 that, under some assumptions, one direction
of the equivalence holds, i.e. every relatively de�nable Q ⊆ F is actually of
the form D ∩ F for some de�nable set D.

2We have chosen the term `d-atomic' instead of `d-isolated' (as in [2]) to avoid confusion
with `isolated with respect to d' and to emphasize that this notion plays a role analogous
to that of atomic (as in principal) types in discrete logic.
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Lemma 2.10. Given Q ⊆ F ⊆ Sn(T ), with Q and F closed, Q is de�nable
relative to F if and only if there is a formula ϕ : Sn(T ) → [0, 1] such that
F ∩ Jϕ = 0K = Q and for all x ∈ F , d(x,Q) ≤ ϕ(x).

Proof. (⇐). Assuming that such a function exists, for every ε > 0 the
set F ∩ Jϕ < ε

2K is relatively open in F and by construction we have that
Q ⊆ F ∩ Jϕ < ε

2K ⊆ Q<ε.
(⇒). Assume without loss of generality that the metric diameter of F is

at most 1. Assume that Q is de�nable relative to F . Let U0 = F and ε0 = 1.
For each n < ω, �nd εn > 0 small enough that εn < 2−n, εn < εn−1, and
Q≤εn ⊆ Un−1 (which must exist by compactness). Then let Un = intQ≤εn ,
which by assumption contains Q. Note that by construction

⋂
n<ω Un =⋂

n<ω Q
≤εn = Q.

Since F is a compact Hausdor� space, and therefore normal, we can �nd
for each n < ω a continuous functions ϕn : F → [0, 1] such that ϕn � Q≤εn =
0 and ϕn � (F rUn−1) = 1. Now let ϕ(x) =

∑
n<ω(εn−εn+1)ϕn+3(x). Note

that this is a uniformly convergent series of continuous functions (since εn is a
monotonically decreasing sequence of positive numbers and since the ϕn are
uniformly bounded), so ϕ(x) is a continuous function. Furthermore note that
the zeroset Jϕ = 0K is precisely Q. Finally note that if εn < d(x,Q) ≤ εn−1,
then we have that x /∈ Q≤εn and in particular x /∈ Un, so x ∈ F r Un. This
implies that ϕk(x) = 1 for all k ≥ n + 1, so we have that ϕ(x) is at least
εn−2 > εn−1 (or 1 if n − 2 < 0). If x ∈ Q then d(x,Q) = ϕ(x) = 0, so we
have that for any x ∈ F , d(x,Q) ≤ ϕ(x), as required.

Finally since Sn(T ) is a normal space we can use the Tietze extension
theorem to extend ϕ to a continuous function on all of Sn(T ). �

In type spaces the function in Lemma 2.10 can be taken to be the actual
distance predicate of the set, but in arbitrary subspaces this is not always
possible.

Lemma 2.11. For D, E, and F closed sets, if D ⊆ F is de�nable relative
to F and E ⊆ D is de�nable relative to D, then E is de�nable relative to F .
In particular if D is a de�nable set and E is de�nable relative to D then E
is de�nable.

Proof. Using the previous lemma and the Tietze extension theorem, let P0

be a continuous function on F such that JP0 = 0K = D and d(x,D) ≤ P0(x)
for all x ∈ F . Furthermore let P1 be a continuous function on F such that
D ∩ JP1 = 0K = E and such that d(x,E) ≤ P1(x) for all x ∈ D. Since P1 is
continuous and F is a compact topometric space, P1 is uniformly continuous
with regards to the metric. Let α : [0, 1] → [0, 1] be a continuous, non-
decreasing modulus of uniform continuity of P1 (i.e. a function satisfying
α(0) = 0 and |P1(x) − P1(y)| ≤ α(d(x, y)) for all x and y). Finally let
P (x) = min {P0(x) + α(P0(x)) + P1(x), 1}.

First note that the zeroset of P (x) is precisely E. Furthermore, for any
x ∈ F we can �nd y ∈ D such that d(x, y) = d(x,D) (by compactness), so
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we have that d(x,E) ≤ d(x, y)+d(y,E) ≤ d(x,D)+P1(y) ≤ P0(x)+P1(x)+
α(d(x, y)) ≤ P0(x) + P1(x) + α(P0(x)). So since d(x,E) ≤ 1, we have that
d(x,E) ≤ P (x), as required. �

In discrete logic it is a basic fact that if tp(ab) is atomic, then tp(a/b) is
atomic as well. This may fail in continuous logic [5, Rem. 12.14], but some
approximation of it is still true, which is summarized in the following lemma.

Lemma 2.12. If tp(ab) is atomic and M is any model containing b̄, then

for every ε > 0 there exists a′b
′ ∈M such that ab ≡ a′b′ and d(b, b

′
) < ε.

Proof. Let D(x, y) be a distance predicate for the de�nable set tp(ab). We
have that M |= infxD(x, b) = 0, since this is part of the type of b. Let a0

be such that D(a0, b) < ε. Since D is a distance predicate this implies that

there is a′b
′ ∈ D(M) with d(a0b, a

′b
′
) < ε. a′b

′
is the required sequence of

elements. �

The following proposition and corollary are almost certainly known but
we could not �nd them in the literature. They are very similar to Fact 1.5
in [7].

Proposition 2.13. If a countable theory T has a prime model, then it has
a unique prime model. Moreover if a ≡ b with a ∈ M and b ∈ N, with M
and N prime, then for every ε > 0 there is an isomorphism f : M→ N such
that d(f(a), b) < ε.

Proof. Let M and N be prime. Let a ∈M and b ∈ N with a ≡ b. Fix ε > 0.
By the omitting types theorem, every type realized in M or N is atomic. Let
{ai}i<ω be an enumeration of a tail dense sequence in M (i.e. a sequence in
which every �nal segment is dense), starting with a, and let {bi}i<ω be an
enumeration of a tail dense sequence in N , starting with b. We are going
to build an array {cij}i<ω,j≤i ⊆ M and an array {eij}i<ω,j≤i ⊆ N with the
following properties:

• For every i < ω and j ≤ i, d(cij , c
i+1
j ) < 2−i−2ε and d(eij , e

i+1
j ) <

2−i−2ε.
• At each stage i, ci0c

i
1 . . . c

i
i ≡ ei0ei1 . . . eii.

• For every k < ω, c2k
2k = ak and e2k+1

2k+1 = bk.

For the initial step, let c0
0 = a0. Since tp(a0) is atomic, we can �nd e0

0 ∈M
such that c0

0 ≡ e0
0.

On odd step 2k+1, given c2k
≤2k and e

2k
≤2k satisfying c

2k
≤2k ≡ e2k

≤2k, let e
2k+1
j =

e2k
j for j ≤ 2k and let e2k+1

2k+1 = bk. In particular note that d(e2k
j , e

2k+1
j ) =

0 < 2−2k−2ε for each j ≤ 2k. Now by the lemma we can �nd c2k+1
≤2k+1 ∈ M

such that d(c2k
≤2k, c

2k+1
≤2k ) < 2−2k−3ε and such that c2k+1

≤2k+1 ≡ e
2k+1
≤2k+1.

On even step 2k+ 2, given c2k+1
≤2k+1 and e2k+1

≤2k+1 satisfying c2k+1
≤2k+1 ≡ e

2k+1
≤2k+1,

let c2k+2
j = c2k

j for j ≤ 2k + 1 and let c2k+2
2k+2 = ak. In particular note that



STRONGLY MINIMAL SETS AND CATEGORICITY IN CONTINUOUS LOGIC 9

d(c2k+1
j , c2k+1

j ) = 0 < 2−2k−3ε for each j ≤ 2k + 1. Now by the lemma we

can �nd e2k+2
≤2k+2 ∈ N such that d(e2k+1

≤2k+1, e
2k+2
≤2k+1) < 2−2k−4ε and such that

e2k+2
≤2k+2 ≡ c

2k+2
≤2k+2.

For each j < ω, let cj = limi→ω c
i
j and ej = limi→ω e

i
j . By construction

these are all Cauchy sequences and thus have limits in M and N respectively.
Also by uniform continuity of formulas we have that c0c1 · · · ≡ e0e1 . . . .

We need to show that the sequences c<ω and e<ω are metrically dense
in M and N respectively. This follows by the fact that the sequences a<ω
and b<ω were tail dense. For any x ∈ M and any δ > 0 there is an ai such
that d(x, ai) <

1
2δ and d(ai, cj) <

1
2δ for some cj , implying that d(x, cj) < δ.

Therefore c<ω is dense in M. Likewise for e<ω in N, so we have that the
elementary map f0 : c<ω → e<ω extends to an isomorphism f : M→ N.

Now note that if c is the initial segment of c<ω of the same length as a,
then we have by construction that d(c, a) <

∑
i<ω 2−i−2ε = 1

2ε. Likewise if e

is the initial segment of e<ω of the same length as b, then by construction we
have that d(e, b) < 1

2ε. Therefore we have that d(f(a), b) ≤ d(f(a), f(c)) +

d(e, b) < 1
2ε+ 1

2ε, as required. �

Corollary 2.14. If M is a prime model of a countable theory, then it is
approximately ℵ0-homogeneous (i.e. satis�es that for any �nite tuples a ≡ b
and for any ε > 0 there is an automorphism σ of M such that d(σ(a), b) < ε).

Unlike in discrete logic, in continuous inseparably categorical theories it
may be necessary to look in imaginary sorts for strongly minimal sets (see
Example 5.49, the unit ball of a p-adic L∞ space). [5, Sec. 11] alludes to
the fact that the notion of imaginary sort in continuous logic ought to be
more complicated than the corresponding notion in discrete logic, and [8]
sketches this construction. For the sake of precision we will give an exact
de�nition of what we mean by an imaginary sort here, as it is perhaps a little
more complicated than someone familiar with discrete logic might suppose.
To summarize the di�erence informally, we need to allow ω-products and
passing to de�nable subsets in addition to the familiar product and quotient
sorts (where quotients are with regards to de�nable pseudo-metrics, not just
de�nable equivalence relations). Note that this notion is more permissive
than the traditional notion for discrete theories interpreted as continuous
theories.

De�nition 2.15. Given two pseudo-metrics d0 and d1 on some �xed set X,
we say that d0 uniformly dominates d1 if for every ε > 0, there is a δ > 0
such that for all x, y ∈ X, if d0(x, y) < δ, then d1(x, y) < ε.

We say that d0 and d1 are uniformly equivalent if d0 uniformly dominates
d1 and d1 uniformly dominates d0.

De�nition 2.16. Imaginary sorts are de�ned inductively:

• The home sort is an imaginary sort.
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• Any product of at most countably many imaginary sorts is an imag-
inary sort. A �nite product sort is given the max metric, unless
otherwise stated, and an ω-product of sorts with metrics {dk}k<ω
is given a metric of the form maxk<ω akdk, where ak is a sequence
of positive real numbers such that limk→∞ akDk = 0 and Dk is the
diameter bound of the sort corresponding to dk. We will typically
take ak = 2−k.3

• Any quotient of an imaginary sort by a de�nable pseudo-metric is an
imaginary sort.
• Any de�nable subset of an imaginary sort is an imaginary sort.

One thing that should be noted is that, when talking about models, a
quotient sort may contain more elements than the actual image of the cor-
responding quotient map, as we implicitly pass to the metric completion.

Despite the apparent iterative complexity of the collection of imaginaries,
all imaginaries can be de�nably re-expressed in a simple normal form:

Lemma 2.17 (Imaginary Normal Form). For any parameter set A, any A-
de�nable imaginary has an A-de�nable bijection with an A-de�nable subset
of a ∅-de�nable quotient of Hω, the sort of ω-tuples from the home sort.

Proof. First we will (a) prove the lemma for A = ∅, then we will (b)
prove that any A-de�nable quotient and a ∅-de�nable imaginary has an
A-de�nable bijection with an A-de�nable subset of a ∅-de�nable imaginary.
Then, �nally, we will use this to (c) prove the full lemma.

(a). We'll say that an imaginary that is a de�nable subset of a quotient
of Hω is in `normal form.' We'll show by structural induction that every
imaginary is in de�nable bijection with one in normal form. The home sort
is in de�nable bijection with a quotient of Hω, namely the one that ignores
all of the ω-tuple except for the �rst element.

Assume that I is an imaginary that is a de�nable subset of an imaginary in
normal form. Since a relatively de�nable subset of a de�nable set is de�nable
(by Lemma 2.11), we have that I can be re-expressed in normal form.

Assume that I is an imaginary that is a de�nable quotient of an imaginary
in normal form. First we need to show that if D is a de�nable set in some
sort S and ρ is a pseudo-metric on D, then there is a pseudo-metric ρ′ on
S such that ρ′ � D = ρ. Assume without loss of generality that d and ρ are
[0, 1]-valued. Since ρ is a de�nable pseudo-metric, it is uniformly dominated
by d, so in particular we can �nd a continuous function α : [0, 1] → [0, 1]
such that

• α(x) = 0 if and only if x = 0,
• α is concave down and non-decreasing,
• and ρ(x, y) ≤ α(d(x, y)) for all x, y.

3Note that any such metric is always de�nable on the sort in question and any two
such metrics are always uniformly equivalent.
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Note that by the �rst two conditions we have that α(d) is a metric uniformly
equivalent to d. Consider the formula

ρ′(x, y) = inf
z,w∈D

α(d(x, z)) + ρ(z, w) + α(d(w, y)).

First to see that ρ′ � D = ρ, for any x, y, z, w ∈ D we have ρ(x, y) ≤ ρ(x, z)+
ρ(z, w) + ρ(w, y) ≤ α(d(x, z)) + ρ(z, w) + α(d(w, y)), so ρ(x, y) ≤ ρ′(x, y).
But clearly ρ′(x, y) ≤ ρ(x, y) so we have ρ(x, y) = ρ′(x, y) for x, y ∈ D as
required. ρ′ clearly satis�es ρ′(x, x) = 0, ρ′(x, y) ≥ 0, and ρ′(x, y) = ρ′(y, x),
so we only need to verify that ρ′ satis�es the triangle inequality. Pick x, y, z.
For any u, v, s, t ∈ D clearly we have

ρ(u, t) ≤ ρ(u, v) + ρ(v, s) + ρ(s, t) ≤ ρ(u, v) + α(d(v, s)) + ρ(s, t)

≤ ρ(u, v) + α(d(v, y)) + α(d(y, s)) + ρ(s, t).

So we have

ρ′(x, z) ≤ α(d(x, u)) + ρ(u, t) + α(d(t, z))

≤ α(d(x, u)) + ρ(u, v) + α(d(v, y)) + α(d(y, s)) + ρ(s, t) + α(d(t, z)).

So since this is true for any u, v, s, t ∈ D, we must have

ρ′(x, z) ≤ ρ′(x, y) + ρ′(y, z),

as required.
So we have a de�nable pseudo-metric ρ′ extending ρ to all of S. Now

we need to argue that the (metric closure of the) image D/ρ′ is a de�nable
subset of S/ρ′, but this is trivial since the distance predicate of D/ρ′ is just
ρ′(x,D/ρ′) = infy∈D ρ

′(x, y), which is a formula because D is a de�nable set.
We have shown that if we have a quotient of an imaginary in normal form

we can re-express it as a de�nable subset of a quotient of a quotient of Hω.
So then all we need to do is note that a quotient by some pseudo-metric ρ′

of a quotient by some pseudo-metric ρ is equivalent to a quotient by ρ′ in
the �rst place, since ρ′ is still a de�nable pseudo-metric on the original sort.
From this we get that I can be expressed in normal form.

Let I be an imaginary that is a (possibly ω-)product of imaginaries in nor-
mal form. Let {Ik}k<` be the family of imaginaries and let Ik be the set Dk

that is a de�nable subset ofHω/ρk, where ρk is some de�nable pseudo-metric.
Our �rst claim is that

∏
k<`Dk is a de�nable subset of X =

∏
k<`H

ω/ρk.
If ` is �nite, then the metric on X is given by max(ρ0, . . . , ρ`−1) and so
the distance predicate of

∏
k<`Dk is just the maximum of the distance

predicates of the Dk. If ` is in�nite, then the metric on X is given by
maxk<ω 2−kρk, so again we can de�ne the distance predicate of

∏
k<ωDk in

X by maxk<ω 2−kρk(xk, Dk), so again
∏
k<`Dk is a de�nable subset of X.

All that's left is to argue that X is equivalent to a quotient of Hω, but this
is easy since the metric on X is a formula on ((Hω)`)2 and (Hω)` and Hω

clearly have a ∅-de�nable bijection between them.
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So by structural induction on imaginaries, we have that every ∅-de�nable
imaginary has a ∅-de�nable bijection with an imaginary that is a ∅-de�nable
subset of a ∅-de�nable quotient of Hω.

(b). Let ρ(x, y; a) be an A-de�nable pseudo-metric on some ∅-de�nable
imaginary sort I. Now consider the formula

ρ′(x, z, y, w) = max

{
d(z, w), sup

t
|ρ(t, x, z)− ρ(t, y, w)|

}
.

This is clearly a pseudo-metric on I × H` for some ` ≤ ω (since it is the
supremum of a family of pseudo-metrics). The set U ×{a} is an A-de�nable
subset of U ×H`, so by the argument in part (a) its image in (U ×H`)/ρ′

is a de�nable subset, which we'll call D. Furthermore, if d(z, w) > 0, then
ρ′(x, z, y, w) > 0 as well, so if some xz ∈ I × Hω maps to D, then z = a.
Finally, the pseudo-metric ρ′ restricted to the set I ×a is clearly identical to
the pseudo-metric ρ under the obvious bijection between I and I×{a}. This
implies that this bijection respects both of the quotients I/ρ and (I×{a})/ρ′,
but the second one is identically the de�nable set D, so I/ρ has an A-
de�nable bijection with an A-de�nable subset of the ∅-de�nable imaginary
(I ×H`)/ρ′.

(c). We have that every A-de�nable imaginary has an A-de�nable bijec-
tion with an imaginary that is an A-de�nable subset D of an A-de�nable
quotient Hω/ρ. We also have that Hω/ρ has an A-de�nable bijection with
an A-de�nable subset E of some ∅-de�nable imaginary (speci�cally a di�er-
ent quotient of Hω). Thinking of D as an A-de�nable subset of E we get
that D is an A-de�nable subset of some ∅-de�nable quotient of Hω. �

Notation 2.18. Given an imaginary sort I and a set of parameters A, we
will write the type space of elements of I over the parameters A as SI(A).

3. Vaughtian Pairs

There are two strengthenings of the no Vaughtian pairs condition that
we will need to use later on. Here we develop familiar facts regarding these
notions and, in particular, prove that inseparably categorical theories satisfy
these stronger conditions.

De�nition 3.1. IfX ⊆ S1(A) is a de�nable (resp. open or open-in-de�nable)
set containing a non-algebraic type, with A countable, and if M � N ⊇ A is
a proper elementary pair such that X(M) = X(N), then we say that (M,N)
is a de�nable (resp. open or open-in-de�nable) Vaughtian pair (with regards
to X). A Vaughtian pair with no quali�er is a de�nable Vaughtian pair.

Note that if a theory has no open-in-de�nable Vaughtian pairs then it has
no open Vaughtian pairs and no de�nable Vaughtian pairs, since open sets
and de�nable sets are special cases of open-in-de�nable sets. In discrete logic
these three notions are essentially the same; in continuous logic, however,
they are all distinct:
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Example 3.2.

(i) If M is a model of any discrete theory with a Vaughtian pair, then the
structure Mω with the metric d(α, β) = 2−i where i is the smallest
index such that α(i) 6= β(i) and with the function f(α)(i) = α(i +
1), has a de�nable Vaughtian pair but no open Vaughtian pairs. If
Th(M) is ω-stable but is not inseparably categorical, then this is an
example of an ω-stable theory with no open Vaughtian pairs that is
not inseparably categorical.

(ii) (Example 4.2) If N is a discrete metric space with a single unary
[0, 1]-valued predicate whose values are dense in [0, 1], then Th(N)
has no de�nable Vaughtian pairs (because every de�nable set is either
�nite or co�nite in every model) but does have an open Vaughtian
pair.

(iii) The structure Nω�where N is the structure in part (ii) with the
truncation map f(α)(i) = α(i + 1) and with a [0, 1]-valued unary
predicate that is the predicate from part (ii) evaluated on α(0)�is an
example of a structure whose theory has no de�nable Vaughtian pairs
and no open Vaughtian pairs but which does have an open-in-de�nable
Vaughtian pair.

Veri�cation. (i) is clear. (ii) is veri�ed in Example 4.2. For (iii), Th(Nω)
has no open Vaughtian pairs, by the same argument as in (i). This is an
imaginary sort of N, so in particular if D is a de�nable subset of Nω and
for some σ ∈ N<ω, we look at the ball Bσ = {α ∈ N<ω : σ ≺ α} and the
function f : Bσ → N which maps f(α) = α(|σ|) (i.e. the �rst element of α
not in σ), thenD∩Bσ is de�nable (since Bσ is logically clopen) and the image
f(D∩Bσ) is a de�nable subset of N. This implies that any de�nable subset
of Nω is actually de�nable in the reduct where the [0, 1]-valued predicate
is removed. This reduct is ℵ1-categorical, so it has no de�nable Vaughtian
pairs. Therefore Th(Nω) has no de�nable Vaughtian pairs. However if we
�x some element b ∈ N and note that if D = {α : (∀i > 0)α(i) = b}, then
D is a de�nable set, since d(x,D) = 1

2d(f(x), bω). We then get an open-in-
de�nable Vaughtian pair by considering the same open set as in part (ii),
even though this theory does not have any de�nable Vaughtian pairs or any
open Vaughtian pairs. �

There is a strictly stable discrete theory which has no Vaughtian pairs but
which does have an imaginary Vaughtian pair, although the same cannot
happen in a discrete superstable theory [10].

Proposition 3.3. Suppose that T is a countable theory, U ⊆ D ⊆ Sn(B)
is an open-in-de�nable set, and B ⊆ N ≺ M is a Vaughtian pair over U ,
then there exists a model A such that for some open V ⊆ D containing a
non-algebraic type, #dcA = ℵ1 but #dcV (A) = ℵ0.

Proof. Find p ∈ U that is non-algebraic and �nd a formula ϕ such that
p ∈ Jϕ < 1

2K ⊆ U . Note that ϕ and D are de�nable over some countable set
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B0 ⊆ B. Now it is clear that (M,N) is still an open-in-de�nable Vaughtian
pair with regards to V = Jϕ < 1

2K.
Let (D1,D0) be a countable elementary sub-pre-structure4 of (M,N) such

that D0 ⊇ B0. By the same argument as in discrete logic, we can �nd
countable pre-structures (A1,A0) � (D1,D0) such that A1 and A0 realize
the same types, and are both (exactly) ℵ0-homogeneous (as pre-structures,
i.e. only over parameters that are actually in them), so that in particular
A1
∼= A0. We can also ensure that A1 and A0 both realize dense subsets of D,

which implies that A0 realizes a metrically dense subset of U(A0) = U(A1),
since U is relatively open in D.

We can run the same elementary chain argument as in discrete logic,
the argument that Ai for limit i is still isomorphic (as a countable pre-
structure) to A0 still works, but we need to argue that at each stage i the
set U(A0) is still metrically dense in U(Ai). Obviously, by construction,
U(A0) is metrically dense in U(A1). Suppose that for some i < ω1, U(A0) is
metrically dense in U(Ai) and (Ai+1,Ai) ∼= (A1,A0). We get from this that
U(Ai) is metrically dense in U(Ai+1), implying that U(A0) is metrically
dense in U(Ai+1) as well. Suppose that for some limit i < ω1 we have that
for all j < i, U(A0) is metrically dense in U(Aj). Then any a ∈ U(Ai) is
actually in U(Aj) for some j < i, so it is still in the metric closure of U(A0),
therefore U(A0) is still metrically dense in U(Ai).

After taking the union and metric completion to get A =
⋃
i<ω1

Ai, we
need to argue that U(A0) is still metrically dense in U(A). Suppose that
a ∈ U(A). Since it is a relatively open set in a de�nable set, it must be the
metric limit of some sequence ak ∈

⋃
i<ω1

U(Ai). Therefore since U(A0) is
dense in every U(Ai), it must be in the metric closure of U(A0) as well, so
in particular #dcU(A) = ℵ0.

Finally we need to show that #dcA = ℵ1. Let ε > 0 be such that for
some a ∈ A1, d(a,A0) > ε. By isomorphism, for each i < ω1, we can �nd
an ai ∈ Ai+1 r A<εi , this is a (>ε)-separated set of size ℵ1, so #dcA ≥ ℵ1.

On the other hand A clearly has a dense subset of size ℵ1, so #dcA = ℵ1, as
required. �

Corollary 3.4. If T is a countable ℵ1-categorical theory, then T has no
open-in-de�nable Vaughtian pairs.

Proof. Suppose that T is a countable theory with an open-in-de�nable Vaugh-
tian pair, then by Proposition 3.3, T has a model A with #dcA = ℵ1, but for
some non-algebraic type over a countable set p, #dcp(A) ≤ ω. This implies
that A is not ℵ1-saturated, implying that T is not ℵ1-categorical. �

Corollary 3.5. If T is a countable ℵ1-categorical theory, then T has no
open Vaughtian pairs in any imaginaries. In particular it has no imaginary
Vaughtian pairs.

4Recall that a pre-structure is a metric structure in which the metric is allowed to be
a possibly incomplete pseudo-metric [5].
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Proof. An imaginary expansion of a κ-categorical theory is still κ-categorical.
�

4. Dictionaric Type Spaces

It is well known that de�nable sets are poorly behaved in continuous logic.
As it will turn out, ω-stable theories (and, more generally, totally transcen-
dental theories) have better behavior with regards to de�nable sets than
arbitrary continuous �rst-order theories, even relative to strictly superstable
theories. The speci�c property they have seems to be important enough
to have its own adjectival name. A similar, slightly weaker concept was
discussed in the introduction of [3] but was not developed.

4.1. De�nition and Characterization.

De�nition 4.1.

(i) LetX be a type space or a de�nable set. We say thatX is dictionaric
if for every p ∈ X and closed F ⊆ X with p /∈ F , there is a de�nable
set D ⊆ X such that p ∈ intX D and D ∩ F = ∅ (i.e. X has a basis
of de�nable neighborhoods).

(ii) A theory T is dictionaric if for every n < ω and parameter set A,
Sn(A) is dictionaric.

(iii) A theory T is dictionaric over models if for every n < ω and model
M |= T , Sn(M) is dictionaric.

Note that in these de�nitions when we talk about a de�nable set being
dictionaric, we are talking about it relative to some speci�c type space. It
may be the case that a de�nable set D is dictionaric relative to Sn(A), but
that there also is some larger parameter set B ⊃ A such that D fails to be
dictionaric relative to Sn(B). It is easy to construct such an example in which
D is a singleton in SN (A). This perspective is justi�ed by thinking of D as
the type space of the imaginary corresponding to D (over the parameters in
question).

Every discrete theory is clearly dictionaric. With some work it is possi-
ble to show that randomizations of discrete theories (as de�ned in [6]) are
dictionaric as well.

The following is a simple example of a theory which fails to be dictionaric
in a drastic way.

Example 4.2. A strictly superstable theory T such that S1(T ) is not a single-
ton but such that the only de�nable subsets of S1(T ) are ∅ and Jd(x, x) = 0K
(i.e. the whole home sort). (Note that this is the same as Example 3.2 (ii).)

Veri�cation. Let M be a structure whose universe is [0, 1] with a discrete
metric and which has a single unary predicate P such that P (x) = x (note
that the �rst x is an element of the structure but the second x is a truth
value). To see that T = Th(M) is weakly minimal and, in particular, su-
perstable, note that it can be realized as a continuous reduct of a discrete
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weakly minimal theory: the theory with an in�nite sequence of unary pred-
icates Qn which says that every �nite quanti�er free type occurs (i.e. the
standard example of a strictly superstable weakly minimal theory with triv-
ial pregeometry). We can de�ne P =

∑
n<ω 2−n−1Qn and take the reduct

where we forget the Qn's and this will be the theory T . The type space S1(∅)
is homeomorphic to [0, 1] with the standard topology. For any 0 < ε < 1 and
any closed set F ⊆ S1(∅), F<ε = F , so the only de�nable sets are clopen
sets, which are ∅ and Jd(x, x) = 0K = S1(∅). T cannot be ω-stable because
#dcS1(∅) = 2ℵ0 . �

We will now present a characterization of dictionaric type spaces and
de�nable sets.

Proposition 4.3. Let X be a type space or a de�nable set. The following
are equivalent:

(i) X is dictionaric.
(ii) For every ε > 0, X has a basis of open sets U satisfying U ⊆ U<ε.
(iii) De�nable sets separate disjoint closed subsets of X.
(iv) For every closed F,G ⊆ X with F ∩ G = ∅, there is a de�nable set

D such that either F ⊆ D and D∩G = ∅ or G ⊆ D and D∩F = ∅.
(v) X has a network of de�nable sets (i.e. for every p ∈ U ⊆ X, with U

open, there is a de�nable set D such that p ∈ D ⊆ U).
(vi) For every p ∈ U ⊆ X, with U open, and every ε > 0, there is an open

set V ⊆ U and a closed set F ⊆ X such that p ∈ V and dH(V, F ) < ε
(where dH is the Hausdor� metric on sets).

Proof. We will prove (i) ⇒ (v) ⇒ (ii) ⇒ (i), (i) ⇒ (iv) ⇒ (iii) ⇒ (i), and
(ii)⇔ (vi).

(i)⇒ (v). This is immediate.

(v)⇒ (ii). For any de�nable set D and ε > 0, the set U = D<ε/2 satis�es

U ⊆ D≤ε/2 ⊆ D<ε. So since given x ∈ D ⊆ U we can always �nd ε > 0
small enough that D≤ε/2 ⊆ U (by compactness), we have that (ii) holds.

(ii) ⇒ (i). Let x ∈ V ⊆ X be a point and an open neighborhood.
Find O open such that x ∈ O and O ⊆ V . Find ε0 > 0 small enough

that O
≤2ε0 ⊆ V . Using the assumption of (ii), �nd an open neighborhood

U0 of x such that U0 ⊆ O and such that U0 ⊆ U<ε00 . For each n < ω,

given Un, �nd Vn open such that Un ⊆ Vn and V n ⊆ U<εnn . Then �nd

εn+1 > 0 small enough that V
≤εn+1

n ⊆ U<εnn and εn+1 < min {εn, 2−n}.
Using the assumption of (ii), for each y ∈ Un, �nd an open neighborhood

On,y such that On,y ⊆ Vn and such that On,y ⊆ O
<εn+1
n,y . By compactness

this cover has a �nite subcover. Let Un+1 be its union. Note that we have

that Un ⊆ Un+1 ⊆ U<εn+1

n+1 ⊆ U≤εn+1

n+1 ⊆ U<εnn ⊆ O≤2ε0 ⊆ V.
Now �nally let D =

⋂
n<ω U

≤εn
n =

⋂
n<ω U

<εn
n . Clearly U0 ⊆ D ⊆ V , so

D is a neighborhood of x that is a sub-neighborhood of V . Furthermore D
is clearly closed. To see that D is de�nable, note that for any δ > 0 there
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is an n such that εn < δ, so we have that D<δ ⊇ U<εnn ⊇ D. Therefore
D ⊆ intD<δ for every δ > 0 and D is de�nable. Therefore X is dictionaric.

(i) ⇒ (iv). Let F and G be disjoint closed sets. For each point x ∈ F ,
�nd a de�nable neighborhood Dx disjoint from G. By compactness �nitely
many of these cover F . Since the union of �nitely many de�nable sets is
de�nable we have that their union D is a neighborhood of F disjoint from
G.

(iv)⇒ (iii). Given F and G, disjoint closed sets, let U ⊇ F and V ⊇ G be
disjoint open neighborhoods and let L = X r (U ∪ V ) be a closed separator
between F and G. Now let D be the guaranteed de�nable set separating
F ∪G and L. If D ⊇ F ∪G, then D∩U and D∩V are the required de�nable
sets (because if the intersection of a de�nable set and an open set is closed,
then it is de�nable). If D ⊇ L, then consider the disjoint closed sets F and
D ∪ V . Find U ′ ⊇ F and V ′ ⊇ D ∪ V disjoint open neighborhoods, and let
L′ = X r (U ′ ∪ V ′) be a closed separator between F and D ∪ V . Let E be
the guaranteed de�nable set separating F ∪D∪V and L′. If E ⊇ F ∪D∪V ,
then E ∩U ′ is the required de�nable set for F . If E ⊇ L′, then E ∪U ′ is the
required de�nable set for F . So in any case we have that there are de�nable,
disjoint E and D such that F ⊆ E and G ⊆ D.

(iii) ⇒ (i), If x ∈ U ⊆ X with U open, we can �nd an open set V such
that x ∈ V and V ⊆ U . A de�nable set separating V and X r U is the
required de�nable neighborhood of x.

(ii)⇒ (vi). This is immediate.
(vi) ⇒ (ii). Given x ∈ V ⊆ X, with V open, �nd open V ′ such that

x ∈ V ′ and V ′ ⊆ V . Fix ε > 0, �nd U ⊆ V ′ with x ∈ U and such that for
some closed set F , dH(U,F ) < ε

5 . By the de�nition of the Hausdor� metric

this implies that U ⊆ U ⊆ F≤ε/3 ⊆ U≤2ε/3 ⊆ U<ε, so we get the required
basis of open sets. �

4.2. Properties of Dictionaric Type Spaces. In this section we will show
that dictionaric type spaces enjoy a few nice properties, but �rst we will need
the following lemma.

Lemma 4.4. If D ⊆ X is a de�nable set and U ⊆ D is open in D, then
U<ε is open (in X) for every ε > 0.

Proof. For each x ∈ U , �nd ε > 0 small enough that x /∈ (D r U)≤2ε. Now
consider D<ε = (DrU)<ε∪U<ε. Note that (DrU)<ε∪U<εr(DrU)≤2ε =
U<ε r (D r U)≤2ε is an open set containing x and contained in U<ε. Since
this remains true for any smaller ε > 0 we have that U ⊆ intU<δ for every
δ > 0.

To see that U<ε is actually open, �rst note that U<ε ⊇
⋃

0<δ<ε(intU<δ)<ε−δ

by the triangle inequality and U<ε ⊆
⋃

0<δ<ε(intU<δ)<ε−δ since⋃
0<δ<ε

(intU<δ)<ε−δ ⊇
⋃

0<δ<ε

U<ε−δ = U<ε.
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So we have that U<ε =
⋃

0<δ<ε(intU<δ)<ε−δ, implying that U<ε is an open
set. �

Proposition 4.5 (Hereditariness to De�nable Subsets). If X is a dictionaric
type space or de�nable set, and D is a de�nable subset of X, then D is
dictionaric.

Proof. Let D be a de�nable set in X. Let U satisfying x ∈ U ⊆ D be an
open neighborhood of x in D. Find V an open set in D such that x ∈ V
and V ⊆ U . Then let ε > 0 be small enough that V

<3ε ∩ (D r U) = ∅.
By the preceding lemma we have that V <ε is open as a subset of X, so
by dictionaricness we can �nd a de�nable set E such that x ∈ intE and
E ⊆ V <ε. Now consider the set F = E≤ε ∩ D. By the triangle inequality
this is disjoint from D r U and so is a subset of U . Furthermore it is a
neighborhood of x in D. Also, since E ⊆ V <ε and V ⊆ D, we have that
E ⊆ F<2ε, so F ⊆ intD F

<4ε. Let O be an open in D set such that F ⊆ O ,
O ⊆ U , and O ⊆ intD F

<4ε. Then we have that O is an open neighborhood
of x, smaller than U such that O ⊆ O<4ε. Since we can do this for arbitrary
x, U , and ε, we have by Proposition 4.3 that X is dictionaric. �

The analog of the previous result fails for arbitrary closed F ⊆ X; there is
a dictionaric type space with a closed subset that fails to be `relatively dictio-
naric' (compare this to the fact that any subspace of a totally disconnected
compact Hausdor� space is totally disconnected5).

Compare the following Proposition 4.6 to the fact that if X is a totally
disconnected compact Hausdor� space, F ⊆ X is a closed subset, and Q ⊆ F
is relatively clopen, then there is a clopen set D ⊆ X such that D ∩ F = Q.

Proposition 4.6 (Extension). If X is a dictionaric type space or de�nable
set and we have Q ⊆ F ⊆ X with Q and F closed and Q relatively de�nable
in F , then there is a de�nable set D ⊆ X such that D ∩ F = Q.

Proof. Use the following Lemma 4.7 with Fi = F for all i < ω to get some
de�nable set D and formula ϕ such that D ∩ F ∩ Jϕ ≤ 1K = Q, but Jϕ ≤
1K = X, so D ∩ F = Q, as required. �

Although Proposition 4.6 is the more attractive statement, we will occa-
sionally need this technical strengthening.

Lemma 4.7. Let {Fi}i<ω be a family of closed sets in X, a type space or
de�nable set (not necessarily dictionaric), and let Q be a closed set such that
Q ⊆ Fi and Q is relatively de�nable in Fi for each i < ω.

(i) There is a closed set C ⊆ X and a formula ϕ : X → [0, 1] with
Q ⊆ Jϕ = 0K, such that
• Q ⊆ C and for each ε > 0, Q ⊆ intX C

<ε, and
• for each i < ω, C ∩ Fi ∩ Jϕ ≤ 2−iK = Q.

5Or has fewer than 2 points, if your de�nition of totally disconnected excludes spaces
with 1 or 0 points.
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(ii) (Strong Extension) If X is dictionaric, then C can be taken to be
de�nable.

Proof. (i). Without loss of generality we may assume that Fi ⊆ Fi+1, since
we have that if Q is relatively de�nable in two closed sets F and G, then Q
is relatively de�nable in F ∪ G as well. So we can replace Fi by

⋃
j≤i Fj if

necessary. To see that such a Q is relatively de�nable in F ∪G, �x ε > 0 and
�nd U ⊆ F and V ⊆ G, each relatively open, such that Q ⊆ U and Q ⊆ V
and such that if a ∈ U or if a ∈ V , then d(a,Q) < ε. U ∪ V is a relatively
open neighborhood of Q in F ∪G with the same property, so Q is relatively
de�nable in F ∪G.

Assume without loss of generality that the metric diameter of X is at most
1. For each i < ω, let fi : X → [0, 1] be a continuous function witnessing
that Q is relatively de�nable in Fi, i.e. Q ⊆ Jfi = 0K and for every x ∈ Fi,
d(x,Q) ≤ fi(x). Let f(x) =

∑
i<ω 2−ifi. Note that Jf = 0K ∩ Fi = Q for

every i < ω.
For each k < ω, let Gk = Fk ∩ J4−k−1 ≤ f ≤ 4−kK, let Uk = Jf < 4−kK,

and let Vk = J4−k−2 < f < 4−k+1K ∩ U<2−k+1

k+3 ; note that this Vk is an open

set. Also note that Gk ⊆ J4−k−2 < f < 4−k+1K and that if p ∈ Gk, then
f(p) ≤ 4−k. This implies in particular that 2−kfk(p) ≤ 4−k, and so also

fk(p) ≤ 2−k and d(p,Q) ≤ 2−k. This in turn implies that p ∈ Q≤2−k ⊆
U<2−k+1

k+3 , and thus Gk ⊆ Vk.
Let A = X r

⋃
k<ω Vk. A is clearly closed. Note that Jf = 0K ∩ Vk = ∅

for each k < ω, so we have that Q ⊆ Jf = 0K ⊆ A. We want to show that
for any ε > 0, Q ⊆ intX A

<ε.
Assume that q /∈ A. It must be in Vk for some k < ω. Let q0 = q

and k(0) = k. Assume we are given q` and k(`) such that q` ∈ Vk(`). By

construction there exists q`+1 ∈ Uk(`)+3 such that d(q`, q`+1) < 2−k(`)+1.
Stop if q`+1 ∈ A, otherwise q`+1 ∈ Vk(`+1) for some k(` + 1) strictly larger
than k(`).

After the construction, in either case, the total distance traversed along
the sequence q0, q1, . . . is ≤

∑
k≤m<ω 2−m+1 = 2−k+2. If we stopped, then

the �nal point is in A, so d(q, A) < 2−k+3. If the sequence never stopped,
then it is a Cauchy sequence whose limit, qω, by continuity has f(qω) = 0,

so qω ∈ A as well. So we have that Jf = 0K ⊆ Jf < 2−k−1K ⊆ A<2−k+3
, hence

Q ⊆ Jf = 0K ⊆ intX A
<ε for every ε > 0. Hence we have veri�ed the �rst

bullet point of the lemma for the set A.
Let ϕ(x) = min{4

√
f(x), 1}. Clearly this is a continuous [0, 1]-valued

function on X.
We need to adjust A in order to satisfy the second bullet point in the

i = 0 case; speci�cally, we need to ensure that C ⊆ Jϕ < 2−0K = Jϕ < 1K.
It is not hard to show that if O ⊇ Q is any open neighborhood such that
O ⊆ Jϕ < 1K, then B = A ∩ O still satis�es the property stated in the �rst
bullet point of the lemma and clearly satis�es B ⊆ Jϕ < 1K.
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To verify the second bullet point, consider B ∩ Fi ∩ Jϕ ≤ 2−iK. If i = 0,
then since B ⊆ Jϕ < 2−0K we have that for any x ∈ B, ϕ(x) < 1, and so

4
√
f(x) < 1,

√
f(x) < 1

4 , and f(x) < 4−2. If i > 0, then 2−i < 1, so

4
√
f(x) ≤ 2−i and we have

√
f(x) ≤ 2−i−2 and f(x) ≤ 4−i−2. So for any i,

Jf < 4−i−1K ∩B ∩ Fi ⊆ Jf = 0K.6 This implies that Jϕ ≤ 2−i−1K ∩B ∩ Fi ⊆
Jf = 0K, but Fi ∩ Jf = 0K = Q, so we have B ∩ Fi ∩ Jϕ ≤ 2−i−1K = Q, as
required. So part (i) is satis�ed by setting C = B.

(ii). Assume that X is dictionaric. Continuing from just after the def-
inition of ϕ(x) in the proof of part (i), we need to cover A r Jf = 0K by
de�nable sets so that the overall union will be closed (this will be enough
to imply that the union is de�nable) without spoiling the property stated in
the second bullet point of the lemma.

For each k < ω, let HK = A ∩ J4−k−1 ≤ f ≤ 4−kK. Note that by
construction Hk ∩ Fk = ∅. Let Wk = J4−k−2 < f < 4−k+1K r Fk, which
is an open neighborhood of Hk. Let Dk be a de�nable set such that Hk ⊆
Dk ⊆Wk. Finally let E = A ∪

⋃
k<ωDk.

First to see that E is closed, note that any convergent net {qi}i∈I in E
either eventually stays within some Wk or has limi∈I f(qi) = 0. In the �rst
case, E ∩ (Wk−1 ∪Wk ∪Wk+1) is relatively closed in Wk−1 ∪Wk ∪Wk+1,
since in that set it is a �nite union of closed sets, so the net converges to
a point in E. In the second case, the net must be converging to a point in
Jf = 0K ⊆ A ⊆ E by continuity.

To see that E is de�nable, note that for any ε > 0,

intX E
<ε = intX

t

A ∪
⋃
k<ω

Dk

|<ε

⊇ intX A
<ε ∪

⋃
k<ω

intX D
<ε
k

⊇ Jf = 0K ∪
⋃
k<ω

Dk = E.

Now we want to argue that for each k < ω, Q is relatively clopen in E ∩Fk.
Note that by construction J4−k−2 < f < 4−k+1K ∩ E = J4−k−2 < f <
4−k+1K∩

⋃
k−2≤`≤k+2D`, so we have that J4−k−2 < f < 4−k+1K∩E∩Fk−2 =

∅, since each D`, for k − 2 ≤ `, is disjoint from Fk−2 (because Fm ⊆ Fm+1

for all m < ω). This implies that J0 < f < 4−k+1K ∩ E ∩ Fk−2 = ∅ as well.
Therefore Jf < 4−k+1K ∩ E ∩ Fk−2 ⊆ Jf = 0K, but Jf = 0K ∩ Fk−2 = Q, so
we have that Q is relatively clopen in E ∩ Fk−2, for any k < ω, as required.

Finally since E is a de�nable set and X is dictionaric, we have that E is
dictionaric as well. Let D ⊆ E be a de�nable set such that Q ⊆ D ⊆ Jϕ <

6To see this, note that if x ∈
(
Jf < 4−i−1K ∩A ∩ Fi

)
r Jf = 0K, then x ∈ J0 < f <

4−i−1K and for all k ≥ i, x ∈ Fk ⊇ Fi. Therefore x must be in Gk for some k > i, but the
Gk are all disjoint from A by construction and therefore also disjoint from B. Thus we
have a contradiction.
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1K.7 Consider D∩Fi∩Jϕ ≤ 2−iK. If i = 0, then since D ⊆ Jϕ < 2−0K we have
that for any x ∈ D, ϕ(x) < 1, so 4

√
f(x) < 1,

√
f(x) < 1

4 , and f(x) < 4−2.

If i > 0, then 2−i < 1, so 4
√
f(x) ≤ 2−i and we have

√
f(x) ≤ 2−i−2 and

f(x) ≤ 4−i−2. We have already established that Jf < 4−i−1K ∩ D ∩ Fi ⊆
Jf = 0K, so we also have Jϕ ≤ 2−i−2K ∩ D ∩ Fi ⊆ Jf = 0K. This implies
that Jϕ ≤ 2−i−1K ∩ D ∩ Fi ⊆ Jf = 0K, but Fi ∩ Jf = 0K = Q, so we have
D ∩ Fi ∩ Jϕ ≤ 2−i−1K = Q, as required. So part (ii) is satis�ed by setting
C = D. �

The following Proposition 4.8 and Corollary 4.9 are not used elsewhere in
this paper but are useful in their own right.

Proposition 4.8 (Approximate Intersection). If X is a dictionaric type
space or de�nable set, D is a de�nable subset of X, F ⊆ X is a closed set,
and U ⊇ F is an open-in-X set, then there is a de�nable set E such that
F ⊆ E ⊆ U , and such that D ∩ E is de�nable.

Proof. First since D is de�nable it is itself dictionaric by Proposition 4.5.
Let G ⊆ D be a de�nable set such that G ⊆ U and G ⊇ F ∩D.

Now all we need to do is argue that G ∪ F is relatively de�nable in D ∪
F ∪ (X r U), then the result follows from Proposition 4.6.

To see that G ∪ F is relatively de�nable in D ∪ F ∪ (X r U), �rst note
that since G is de�nable in D, G is de�nable in X. Now notice that any net
{xi}i∈I converging to a point in G ∪ F must either be limiting to a point
in G or be eventually contained in G ∪ F , so in either case we have that
limi∈I d(x,G ∪ F ) = 0, so G ∪ F is relatively de�nable. Now let E be an
extension of G ∪ F to all of X. We have that E is the required de�nable
set. �

Corollary 4.9 (Approximate Intersection of De�nable Sets). If X is a dic-
tionaric type space or de�nable set and D and E are de�nable subsets of X,
then for every ε > 0 there is a de�nable set E′ ⊇ E such that D ∩ E′ is
de�nable, and dH(E,E′) < ε.

Proof. Apply Proposition 4.8 with D = D, F = E, and U = E<ε/2. �

Although Corollary 4.9 is an easy consequence of Proposition 4.8, for
de�nable sets D and E, dH(D,E) < ε can be a very useful condition. It
implies that quantifying over elements of D is `approximately the same as'
quantifying over elements of E to within an accuracy of ε. If D is a uniformly
discrete set, then there is an ε > 0 such that dH(D,E) < ε implies that there
is a de�nable equivalence relation ∼ on E such that E/ ∼ has a canonical
bijection with D.

Proposition 4.10 (Preservation under Quotients). If X is a dictionaric
type space or de�nable set and ρ is a de�nable pseudo-metric on X, then
X/ρ is dictionaric.

7This is only necessary to handle the i = 0 case.
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Proof. Let q ∈ U ⊆ X/ρ be a type with open neighborhood U , consider
π−1(q) ⊆ π−1(U) where π : X → X/ρ is the natural projection map. By
continuity π−1(q) is closed and π−1(U) is open. Let D be a de�nable set
such that π−1(q) ⊆ D and D ∩ U = ∅. The projection π(D) is a de�nable
set (with distance function infy∈D ρ(x, y)). It's clearly contained in U and
contains q, so X/ρ has a network of de�nable sets and by Proposition 4.3
X/ρ is dictionaric. �

Proposition 4.11. If Sn(T ) is dictionaric for every n < ω, then Sω(T ) is
dictionaric as well.

Proof. This follows from the fact that given any type p ∈ Sω(T ) and an
open neighborhood U , there is a restricted formula ϕ(x) such that p(x, ...) ∈
Jϕ(x) < 1

3K and Jϕ(x) ≤ 2
3K ⊆ U . By dictionaricness of S|x|(T ) we can �nd a

de�nable set D such that Jϕ(x) < 1
3K ⊆ D ⊆ Jϕ(x) ≤ 2

3K and this set is still
de�nable in the sort of ω-tuples under the metric given in De�nition 2.16,
so Sω(T ) is dictionaric as well. �

Corollary 4.12. If T is dictionaric, then T eq is dictionaric over parameters
from the home sort (i.e. if A is a set of parameters from the home sort and I
is some imaginary, then the type space SI(A) is dictionaric). In particular,
T eq is dictionaric over models.

Furthermore, if T is dictionaric over models, then T eq is as well.

Proof. By Lemma 2.17 every imaginary is equivalent to a de�nable subset
of a de�nable quotient of the sort of ω-tuples, so the result follows from the
Propositions 4.5, 4.10, and 4.11. �

Unfortunately we cannot, in general, conclude that T eq is itself dictionaric.
There are even discrete counterexamples, such as RCF, where if we consider
the hyperimaginary given by quotienting by the `in�nitesimally close' equiv-
alence relation (which can also be seen as a continuous imaginary sort) and if
we let a be any in�nite element of this hyperimaginary, then S1(a) fails to be
dictionaric in the connected component of tp(a). This phenomenon is related
to failure of elimination of hyperimaginaries. If T is a discrete theory that
eliminates hyperimaginaries, then the continuous T eq is dictionaric. This
implies that any stable or supersimple discrete theory will have dictionaric
continuous T eq, as such theories always eliminate hyperimaginaries [25, 12].
It would be nice to know if this extends to continuous dictionaric theories.

Question 4.13. If T is a continuous dictionaric theory and T is also stable
or supersimple, does it follow that T eq is dictionaric?

4.3. ω-Stable Theories are Dictionaric. Now we will see that, fortu-
nately, the technicality present in Corollary 4.12 is not relevant in the rest
of the paper, as every ω-stable theory is dictionaric (and so also has dictio-
naric T eq). This is a topometric analog of the fact that scattered compact
Hausdor� spaces are automatically totally disconnected. But �rst we will
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need to following Lemma 4.14, which is a metric space analog of the fact
that functions from countable sets to [0, 1] are not surjective.

Lemma 4.14. If (X, d) is any separable metric space, and f : X → [0, 1] is
any function (not necessarily continuous), then for all but countably many

r ∈ [0, 1], {f ≤ r} ⊆ {f < r}, where {f @A r} is {x ∈ X : f(x) @A r} and Ā
is the metric closure of A.

Proof. Assume that there are uncountably many r ∈ [0, 1] such that {f ≤
r} 6⊆ {f < r}. For each such r, let xr be a witnessing element of {f = r}
satisfying d(xr, {f < r}) > 0. Since there are uncountably many such xr,
there is an ε > 0 such that for some uncountable R, d(xr, {f < r}) > ε for
all r ∈ R. This implies that if r, s ∈ R and r > s, then d(xr, xs) > ε, but this
is an uncountable (> ε)-separated set, contradicting that X is a separable
metric space. �

Proposition 4.15.

(i) If X is a small type space or de�nable set (i.e. X is metrically sepa-
rable), then X is dictionaric.

(ii) If T is hereditarily small (i.e. Sn(a) is metrically separable for every
�nite tuple of parameters a), then T is dictionaric.

In particular, if
• T is ω-stable,
• hereditarily ℵ0-categorical (i.e. Ta is ℵ0-categorical for every �-
nite tuple of parameters8), or
• if T has an ℵ0-saturated separable model (as opposed to just an
approximately ℵ0-saturated separable model),

then T is dictionaric.9

Furthermore, totally transcendental theories�those in which every
countable reduct is ω-stable�are dictionaric.

(iii) (Strong Intersection Property) If Sn(A) is a small type space and
D ⊆ Sn(A) is de�nable, then for any formula ϕ : Sn(A) → [0, 1],
for all but countably many r ∈ [0, 1], we have that Jϕ ≤ rK, Jϕ ≥ rK,
Jϕ ≤ rK ∩D, and Jϕ ≥ rK ∩D are all de�nable.

Proof. (i). By the previous lemma, for any continuous function P : Sn(T )→
[0, 1] we have that for all but countably many r ∈ [0, 1], JP ≤ rK = JP < rK.
If a closed set is the metric closure of an open set then it is automatically
de�nable since JP ≤ rK<ε = JP < rK<ε, which is open.

(ii). Given a type p and an open neighborhood U there is a restricted
formula ϕ(x; a) such that p(x) ∈ Jϕ(x; a) < 1

3K and Jϕ(x; a) ≤ 2
3K ⊆ U .

From which we get that there is a de�nable set D such that Jϕ(x; a) ≤ 1
3K ⊆

D ⊆ Jϕ(x; a) < 2
3K, namely, Jϕ(x̄; ā) ≤ rK for some r ∈ (1

3 ,
2
3). This is still

8This does not automatically follow from ℵ0-categoricity in continuous logic [5, Ex.
17.7].

9Note that the second bullet point is a special case of the third bullet point.
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de�nable in the full theory over the full parameter set, so it is the required
de�nable neighborhood of p.

Each of the bulleted conditions implies that T is hereditarily small, and
the fact that totally transcendental theories are dictionaric follows easily
from the fact that each of their countable reducts are dictionaric, so the full
result follows.

(iii). This follows from the fact that D ⊆ Sn(A) is small whenever Sn(A)
is small. �

It is possible to produce an example showing that in Proposition 4.15 we
cannot in general guarantee that Jϕ = rK is a de�nable set for any r ∈ [0, 1],
as in there is an ω-stable theory and a [0, 1]-valued formula ϕ(x) such that
Jϕ = rK fails to be de�nable for every r ∈ [0, 1].

Dictionaricness is not preserved under arbitrary reducts (any non-totally
transcendental discrete theory interprets Example 4.2). Superstability does
not imply dictionaricness (Example 4.2) and neither does this plausible
sounding separation axiom:

(∗) For every p, q ∈ X, with p 6= q, there are disjoint de�nable sets D
and E such that p ∈ intX D, q ∈ intX E.

Examples of (∗) are actually fairly prevalent. Every theory is bi-interpretable
with a theory satisfying (∗): IfS = (S1, X, Y ) is the structure whose universe
is the unit circle in R2 with the standard metric and which has predicates
X and Y for the x- and y-coordinates, then for any structure M, Th(M ×
S), where we take product structures to have both of the factor structures'
metrics as predicates, has the required property. The key is that if ϕ is any
S1-valued formula in the language of M, then the set {〈x, y〉 ∈ M × S :
d(ϕM(x), y) ≤ ε} is always de�nable, with similar statements for n-tuples.
Theories whose models have more than one element always interpret S and
theories whose models have one or fewer elements automatically satisfy (∗).

These examples, however, still have imaginary sorts failing (∗), which
raises the following question.

Question 4.16. If T is a theory such that every type space over T eq satis�es
(∗), does it follow that T or T eq is dictionaric?

5. Inseparably Categorical Theories with Strongly Minimal

Sets

5.1. (Strongly) Minimal Sets. There are existing de�nitions of minimal
set and strongly minimal set in the literature given in [24], but both of
these de�nitions are too weak. The de�nition of strongly minimal set given
there fails to generalize the notion of strongly minimal in discrete logic and
instead corresponds to a countably type-de�nable set containing a unique
non-algebraic type which furthermore is minimal (i.e. a type for which every
forking extension is algebraic). The de�nition of minimal set given there is
trivial in the sense that under it every countable theory with non-compact
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models has a minimal zeroset over any given separable model. The de�ni-
tions given here are equivalent to the de�nitions given in [24] with the extra
stipulation that the sets are de�nable rather than just zerosets. In particu-
lar this means that the notion of a strongly minimal theory given in [24] is
equivalent to the one given here.

De�nition 5.1.

(i) A non-algebraic de�nable set D is minimal (over the set A) if for
each pair F,G ⊆ D of disjoint A-zerosets, at most one of F or G is
non-algebraic.

(ii) A de�nable set is strongly minimal if it is minimal over every set of
parameters.

The naïve translation of the de�nition of minimal set�every set JP (M) =
0K∩D(M) is either compact or co-pre-compact (i.e. has a complement with
a compact closure)�does not work:

Example 5.2. A strongly minimal set D with a de�nable set E ⊆ D that is
neither compact nor co-pre-compact.

Veri�cation. Let M be a structure whose universe is ω×S1, where S1 ⊆ C is
the unit circle with the standard Euclidean metric. Let the distance between
any points in distinct circles be 1. Let D be the entire structure, and let
E be the subset of S1(M) given by {(n, e2πki/(n+1)) : k ≤ n} (where we
are identifying elements of M with their types in S1(M)) together with the
unique non-algebraic type. This set is clearly closed. To see that it is a
de�nable set, pick ε > 0 and consider E<ε. For any n > 4π

ε , E
<ε contains

all of the circle {n} × S1. There are only �nitely many n ≤ 4π
ε , and on each

of these E<ε is an open set since the logic topology agrees with the metric
topology on each individual circle in M. Therefore E<ε is an open set, and
so E is de�nable. �

Another example is (−∞, 0]∪{ln(1+n) : n < ω}, which is an R-de�nable
subset of R (which will be shown to be strongly minimal as a metric space
with the appropriate metric in Theorem 5.22).

5.1.1. Some Characterizations. Here we present some more traditional char-
acterizations of minimal sets.

Proposition 5.3. For a de�nable set D over the structure M the following
are equivalent:

(i) D is minimal.
(ii) For each restricted M -formula ϕ, at most one of Jϕ(M) ≤ 1

3K or

Jϕ(M) ≥ 2
3K is non-compact. (In particular we only need to check

compactness in M, not in arbitrary elementary extensions of M.)10

10Note that there is nothing special about 1
3
and 2

3
(beyond the fact that they are

distinct) or the fact that these are inequalities rather than equalities, so we get the same
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(iii) D is dictionaric (as a subset of Sn(M)) and for every M -de�nable
subset E of D, either E(M) is compact or D(M)∩ Jd(M, E) ≥ εK is
compact for every ε > 0.

Proof. In this proof we will use the notation A≥ε for the set types with
distance from A greater than or equal to ε.

(i)⇒ (ii). This is obvious.
(ii) ⇒ (iii). First we will show that D has a network of de�nable sets,

which is su�cient by Proposition 4.3 part (v). Let p ⊆ D be a type and
let U be an open-in-D neighborhood of p. If p is algebraic, then we are
done, as {p} is a de�nable set. If p is non-algebraic, then �nd V such that
p ∈ V ⊆ V ⊆ U .

We want to argue that every q ∈ ∂V is an algebraic type. For each q ∈ ∂V
�nd restricted formula ψ such that p ∈ Jψ < 1

3K and q ∈ Jψ > 2
3K. Since

p is non-algebraic and V is open, it must be the case that Jψ(M) ≤ 1
3K is

non-compact. Therefore Jψ(M) ≥ 2
3K is compact. Since q is contained in

the interior of a zeroset that is compact in some model, it is algebraic by
Lemma 2.8. Since every q ∈ ∂V is algebraic, and therefore de�nable, V is a
union of open and de�nable sets that is topologically closed, and therefore
de�nable.11 Hence D has a network of de�nable sets and is dictionaric.

If E ⊆ D is an M -de�nable set, then for any ε > 0, we can �nd a
restricted formula ϕ such that E ⊆ Jϕ < 1

3K and D∩E≥ε ⊆ Jϕ > 2
3K. Either

Jϕ(M) ≤ 1
3K and therefore E(M) is compact, or Jϕ(M) ≥ 2

3K and therefore
D(M)∩Jd(M, E) ≥ εK is compact. This implies that either E(M) is compact
or D(M) ∩ Jd(M, E) ≥ εK is compact for every ε > 0, as required.

(iii)⇒ (i). If F,G ⊆ D are disjoint, M -zerosets then we can �nd E ⊇ F
such that E ⊆ D is a de�nable set disjoint from G. E(M) is either compact
or D(M) ∩ Jd(M, E) ≥ εK is compact for every ε > 0. If E(M) is compact
then E(N) and therefore F (N) is compact in every model N �M, since E
is de�nable. Otherwise there is some ε > 0 small enough that G∩E<ε = ∅.
In that case �nd H ⊇ E≥ε such that H ⊆ D is a de�nable set disjoint
from E. Since H is disjoint from E there is some δ > 0 small enough that
H ∩E<δ = ∅, so H(M) ⊆ D(M)∩ Jd(M, E) ≥ δK is a compact set. Since H
is de�nable we have that H(N) is compact in every model N �M, therefore
G(N) is as well. �

We will ultimately show that any minimal set contains a unique non-
algebraic type, but this will be a corollary of something slightly more tech-
nical so we will defer this to later (Proposition 5.13 and Corollary 5.14).
The condition that D be dictionaric when restricting attention to de�nable
sets is necessary in light of Example 4.2, since the theory there has more

statement with Jϕ = 0K and Jϕ = 1K. The proof of the statement in the proposition is
conceptually clearer, however.

11Note that the property `A<ε is open for every ε > 0' is preserved under arbitrary
unions.
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than one non-algebraic ∅-type but appears `strongly minimal' with regards
to de�nable sets in that every de�nable set is either �nite or co-�nite.

Compare the following Proposition 5.4 to the classical facts that minimal
sets in theories with no Vaughtian pairs or over ω-saturated models are
strongly minimal.

Proposition 5.4.

(i) If D is a minimal set over a model M and either
• T is dictionaric and has no Vaughtian pairs or
• T has no open-in-de�nable Vaughtian pairs,

then D is strongly minimal.
(ii) If D is a minimal set over M, an approximately ℵ0-saturated model,

then D is strongly minimal.

Proof. (i). Assume without loss of generality that T is countable. (If we
prove this for each countable reduct of T over which D is de�nable, then it
will be true for the whole theory.) Assume that D is a minimal set containing
the non-algebraic type p and that p is not a strongly minimal type. Let
q0, q1 be distinct non-algebraic extensions of p to some parameter set A ⊇
M. Let ϕ(x; a) be a restricted formula with a ∈ A such that ϕ(qi; a) = i
for both i < 2. Let {bi}i<ω be a sequence of tuples from M such that
tp(bi/M)→ tp(a/M). It must be the case that either in�nitely many i < ω
have ϕ(p; bi) <

2
3 or in�nitely many i < ω have ϕ(p; bi) >

1
3 . Without loss of

generality assume that in�nitely many i < ω have ϕ(p; bi) >
1
3 and restrict

to a sub-sequence on which this is always true.
Now we have that for each i < ω, D ∩ Jϕ(−; bi) ≤ 1

3K is algebraic. Let

N �M be a proper elementary extension. Note that since D∩Jϕ(−; bi) ≤ 1
3K

is algebraic we have that D(M) ∩ Jϕ(M; bi) ≤ 1
3K = D(N) ∩ Jϕ(N; bi) ≤ 1

3K
for each i < ω.

Let Ai = (N,M, bi) and take a non-principal ultraproduct Aω =
∏
i<ω Ai/U

= (Nω,Mω, bω). Note that Nω � Mω,
12 that D(Mω) ∩ Jϕ(Mω; bω) ≤ εK =

D(Nω)∩ Jϕ(Nω; bω) ≤ εK for any 0 < ε < 1
3 , and that tp(bω/M) = tp(a/M).

Therefore p has two non-algebraic extension r0, r1 to Sn(Mω) such that
ϕ(ri; bω) = i for both i < 2. This implies that D(Mω) ∩ Jϕ(Mω; bω) ≤ εK is
not metrically compact for any ε > 0.

If T is dictionaric we can �nd a de�nable set E such that D∩ Jϕ(−; bω) ≤
1
6K ⊆ E ⊆ D ∩ Jϕ(−; bω) < 1

3K, then we will have that E(Mω) = E(Nω) is a
non-compact de�nable set, witnessing that (Nω,Mω) is a Vaughtian pair.

Otherwise the set D∩ Jϕ(−; bω) < 1
3K is open-in-de�nable and unbounded

(it is unbounded because D ∩ Jϕ(−; bω) ≤ 1
6K is closed and non-algebraic),

witnessing that (Nω,Mω) is an open-in-de�nable Vaughtian pair.

12This is not true for arbitrary ultraproducts of proper elementary pairs; you need a
uniform `width' of the extensions, as in you need a �xed ε > 0 such that most Ni contain
an a with d(a,Mi) > ε.
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(ii). Let D(x; a) with a ∈M, our approximately ℵ0-saturated model, be a
de�nable set such that over some set of parameters B there are distinct non-
algebraic types p0, p1 ∈ D. Let ϕ(x; b) be a formula such that ϕ(pi; b) = i for
both i < 2. Since p0 and p1 are non-algebraic we have that D∩Jϕ(−; b) ≤ 1

6K
and D ∩ Jϕ(−; b) ≥ 5

6K are both non-algebraic. Let ε > 0 be small enough

that #ent
>εD(N) ∩ Jϕ(N; b) ≤ 1

3K and #ent
>εD(N) ∩ Jϕ(N; b) ≥ 2

3K are both

in�nite in any model N (this is always possible because D ∩ Jϕ(−; b) < 1
3K

and D ∩ Jϕ(−; b) > 2
3K are relatively open in D).

Find δ > 0 small enough that δ < 1
3ε and if d(x, y) < δ, then |ϕ(x; b) −

ϕ(y; b)| < 1
9 . Find γ > 0 small enough that if d(z, w) < γ, then supx |D(x; z)−

D(x;w)| < δ. By approximate ℵ0-saturation we can �nd ce ≡ ab such that
d(a, c) < γ and ce ∈ M. Let {ui}i<ω be an in�nite (>ε)-separated set in
D(M; c) ∩ Jϕ(M; e) ≤ 1

3K and let {vi}i<ω be an in�nite (>ε)-separated set

in D(M; c) ∩ Jϕ(M; e) ≥ 2
3K. By construction we have that dH(D(M; a),

D(M; c)) < δ (where dH is the Hausdor� metric), so we can �nd {wi}i<ω ⊆
D(M; a) and {ti}i<ω ⊆ D(M; a) such that d(vi, wi) < δ and d(ui, ti) < δ for
each i < ω. By construction this implies that ϕ(wi; e) <

4
9 and ϕ(ti; e) >

5
9

for every i < ω, and hence we have that D(M; a) ∩ Jϕ(M; e) ≤ 4
9K and

D(M; a)∩ Jϕ(M; e) ≥ 5
9K are both not metrically compact and therefore not

algebraic. Therefore D(x; a) is not minimal over M.
So by the converse we have that ifD is a minimal set over an approximately

ℵ0-saturated model, then it is strongly minimal. �

It is unclear whether or not Proposition 5.4 part (i) can be improved to
theories with no Vaughtian pairs in general, in that while a minimal set over
A is dictionaric over A, it may not be dictionaric over some B ⊇ A.

5.1.2. The Pregeometry of a Strongly Minimal Set.

Proposition 5.5. If D is a strongly minimal set de�nable over the set A,
then X 7→ acl(XA) restricted to D is the closure operator of a pregeometry
with �nite character.

Proof. acl automatically obeys re�exivity and transitivity, so all we need to
verify is �nite character and exchange.

For �nite character, suppose that a ∈ D(C) and a ∈ acl(B) for some
set B ⊇ A (not necessarily in D). Let χ(x; b) be a distance predicate for
an algebraic subset of D containing a, with b ∈ B. Let p be the unique
non-algebraic global type in D. Find a restricted formula ϕ such that
supx,y |χ(x; y) − ϕ(x; y)| < 1

4d(p,C). ϕ(x; b) only depends on �nitely many

parameters in the tuple b. Note the following: Jχ(−; b) = 0K ⊆ D∩Jϕ(−; b) ≤
1
4d(p,C)K ⊆ Jχ(−; b) ≤ 1

2d(p,C)K 63 p. Therefore D ∩ Jϕ(−; b) ≤ 1
4d(p,C)K

contains a and is algebraic, so a ∈ acl(B0) for some �nite B0 ⊆ B.
For exchange, let b ∈ D(C)r acl(A) and let c ∈ D(C)r acl(Ab). We want

to show that b /∈ acl(Ac). Since D has a unique non-algebraic type over
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any parameter set, any such pair like bc has the same type. Let B′ be a set
of realizations of tp(b/A) of cardinality (|L| + |A| + 2ℵ0)+ and let c′ be a
realization of the unique non-algebraic type in D over the set AB′. For any
b′0, b

′
1 ∈ B′ we have that b′0c

′ ≡A b′1c
′, but there are too many realizations

of tp(b′0/Ac
′) for it to be algebraic, so we must have b′ /∈ acl(Ac′) for any

b′ ∈ B′. Since b′c′ ≡ bc, the same must be true for b and c, so b /∈ acl(Ac),
as required. �

Note that in a strongly minimal set, acl has �nite character relative to
arbitrary parameters, not just those in the strongly minimal set. In fact it
has �nite character in a particularly strong sense in that if c ∈ acl(AB),
where c is in a strongly minimal set over A, then there is a �nite tuple c ∈ C
and an ε > 0 such that for any e with d(c, e) < ε, b ∈ acl(Ae).

It follows from this proposition that all of the machinery of pregeometries,
such as bases and invariant dimension number, works in continuous logic just
as it does in discrete logic. The following corollary summarizes this more
precisely.

Corollary 5.6. If D is a strongly minimal set de�nable over the set A (which
we may assume without loss of generality is countable), then for any model
M ⊇ A, we have that D(M) ⊆ acl(AB) for any B ⊆ D(M) which is a basis
with regards to the pregeometry induced by the closure operator acl(− ∪A).

Any two bases of D(M) have the same cardinality, any two bases of
the same cardinality are elementarily equivalent, and any basis is an A-
indiscernible set. So in particular if Bi ⊆ D(Mi) for both i < 2 are bases of
the same cardinality, then any bijection f : B0 → B1 extends to an elemen-
tary map f ′ : D(M0) ≡ D(M1).

Finally, for any X ⊆ D(C), if #dcX > #dcacl(A) + |L| then dim(X) =
#dcX. So in particular, if T and A are countable, then for any X ⊆ D(C)
with #dcX uncountable, dim(X) = #dcX.

The following lemma is useful for understanding the metric properties
of strongly minimal sets. Perhaps unsurprisingly, the metric in a strongly
minimal set always behaves somewhat like a locally �nite edge relation in a
discrete strongly minimal set. We are including it in this subsection because
its proof relies on the pregeometric structure of strongly minimal sets.

Lemma 5.7 (Uniform Local Compactness). Let D be a strongly minimal
set de�nable over the set A. There exists an ε > 0 such that for every δ > 0,
there exists an n < ω such that for any model M ⊇ A, every closed ε-ball B
in D(M) can be covered by at most n open δ balls.

So in particular for any a, b ∈ D(M) with d(a, b) < ε, we have that a ∈
acl(b).

Proof. For the purposes of this proof we will use the notations B≤α(x) and
B<α(x) to represent closed and open balls in D (rather than in the ambient
structure).
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Let p be the generic type in D over A. Let b be a realization of p. Let
q be the generic type in D over Ab. We have that d(b, q) > 0. Find ε > 0

satisfying ε < d(b,q)
2 . The set Jd(x, b) ≤ εK does not contain q, so it must be

algebraic. This implies that for every δ > 0 there is an mδ < ω such that
B≤ε(b) can be covered by mδ open δ-balls. Consider the formula

χδ(x) := sup
y0,...,ymδ−1

inf
z

max{d(x, z) ·− ε,max
i<mδ

δ ·− d(yi, z)}.

Note that χδ(x) cannot take on negative values. Let c0, . . . , cmδ be chosen
so that the open δ-balls centered at these points cover B≤ε(b). Since B≤γ is
compact for some γ > ε, by compactness there is a γ > ε such that B≤γ(b) is
also covered by

⋃
i<mδ

B<δ(ci). Then by compactness again we get that there

is some θ < δ such that
⋃
i<mδ

B<θ(ci) covers B≤γ(b). By plugging in these

ci's for the yi's in γδ(b), we get a witness that χδ(a) > min{γ−ε, δ−θ} > 0.
Conversely, we have that for any b |= D, if χδ(b) > 0, then B≤δ(b) can be
covered by mδ open δ-balls. The set Jχδ(x) > 0K is an open neighborhood
of p, so we have that D ∩ Jχδ(x) = 0K is algebraic. For any e ∈ D with
χδ(e) = 0, we must have that d(e, p) > ε. To see this, let f be a realization
of q. We have that d(b, f) ≥ d(b, q) > 2ε, by the choice of ε. Since e is in
acl(∅), b and f have the same type over Ae, implying that d(b, e) = d(f, e).
By the triangle inequality, these must both be greater than ε. This implies
that the set F = (Jχδ(x) = 0K∩D)≤ε∩D does not contain p and is therefore
also algebraic. This implies that there is some kδ < ω such that F (C) is
covered by kδ open δ-balls, which implies that for any e ∈ D with χδ(e) = 0,
B≤ε(e) is also covered by kδ open δ-balls (since it is a subset of F (C)).
Therefore we have that for any g ∈ D, B≤ε(g) is covered by no more than
nδ = max{mδ, kδ} open δ-balls.

Since we can do this for any δ > 0, and since this property is preserved
under passing to substructures (possibly increasing n as a function of δ), we
have the required result. �

5.1.3. Strongly Minimal Types. Now we would like to give de�nitions of
strongly minimal types directly and relate them to the notion of strongly
minimal sets. As part of this we will need a notion of `approximate alge-
braicity.'

De�nition 5.8.

(i) A type p ∈ Sn(A) is said to be (< ε)-algebraic if for any M ⊇ A and
any q ∈ Sn(M) such that q � A = p, d(q,M) < ε (thinking of M as
the set of types it realizes in Sn(M)).

(ii) A set of types is said to be (< ε)-algebraic if every type in it is.
(iii) A type p ∈ Sn(A) is pre-minimal (over A) if for all su�ciently small

ε > 0, p is d-atomic in the set of non-(< ε)-algebraic types in Sn(A).13

13Pre-minimal types have the same relationship with minimal sets that strongly mini-
mal types have with strongly minimal sets. There is a terminological issue we are inheriting
from discrete logic here. In discrete logic, strongly minimal sets have strongly minimal
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(iv) A type p ∈ Sn(A) is strongly minimal if it has a unique pre-minimal
global extension.

Note that if a zeroset F is (< ε)-algebraic, then in any model M, by
compactness F (M) is covered by �nitely many (< ε)-balls with centers in
M. Something approximating the converse is true as well, but we won't need
it. Also note that a zeroset F is algebraic if and only if it is (< ε)-algebraic
for every ε > 0.

Note that the set of non-(< ε)-algebraic types is always closed, and if M
is a model, then the set of non-(< ε)-algebraic types in S1(M) is precisely
S1(M)rM<ε, so in particular a type p ∈ Sn(A) is strongly minimal if for all
su�ciently small ε > 0, p has a unique global extension in the set Sn(C)rC<ε

(where C is the monster model), and furthermore that extension is relatively
d-atomic in Sn(C) r C<ε.

Compare this with the following de�nition of strongly minimal types in
discrete logic: A type p ∈ Sn(A) is strongly minimal if it has a unique global
extension in the set Sn(C) r C, and furthermore that extension is relatively
isolated in Sn(C) r C.

Note that the de�nition of strongly minimal type implies that if p is a
strongly minimal type and q is a global extension of it that is not equal
to p's special extension, then q ∈ C<ε for all su�ciently small ε > 0, so
in particular q is realized and therefore algebraic. This implies that over
any parameter set containing the domain of p, p has a unique non-algebraic
extension.

The following is a characterization of strongly minimal types in terms of
Morley rank and degree, which is developed in the context of continuous logic
in [2]. The notion of Morley rank used here is the one corresponding to the
(f, ε)-Cantor-Bendixson derivative de�ned in that paper, but the statement
of this proposition is not sensitive to the particular kind of Morley rank used,
since they are all asymptotically equivalent as ε → 0 and since in a totally
transcendental theory the statement that Mdε(p) = 1 for all su�ciently
small ε > 0 is precisely the same as the statement that p is a stationary type.
The machinery of Morley rank is not used anywhere else in this paper, and
this proposition is included only for comparison to the classical statement
that a type p is strongly minimal if and only if M(R, d)(p) = (1, 1) (where
M(R, d)(p) = (MR(p),Md(p))) so we will omit actually de�ning Morley
rank here.

Proposition 5.9. A type p ∈ Sn(A) is strongly minimal if and only if
M(R, d)ε(p) = (1, 1) for all su�ciently small ε > 0.

types, and weakly minimal sets have minimal types, but minimal sets do not get a name
for their special types (which are admittedly not very special). Calling such types `weakly
minimal,' while arguably sensible, would invite confusion. `Locally minimal' is another
option, but this is unfortunate when talking about `locally minimal global types' and
erroneously suggests a direct relationship with local types.
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Proof. (⇒). Assume that p ∈ Sn(A) is strongly minimal. Let q be the unique
pre-minimal global extension, so that in particular for all su�ciently small
ε > 0, q is relatively d-atomic in Sn(C)r C<ε. (Sn(C))′ε = Sn(C)r C<ε, so q
is relatively d-atomic in (Sn(C))′ε. Therefore q /∈ (Sn(C))′′ε and q is contained
in open subsets of (Sn(C))′ε of arbitrarily small diameter, so M(R, d)ε(q) =
(1, 1). q is the unique extension of p to (Sn(C))′ε, so M(R, d)ε(p) = (1, 1) as
well.

(⇐). Since p has ordinal Morley ranks it has global non-forking extensions.
Since Mdε(p) = 1 for all su�ciently small ε > 0, it has a unique global non-
forking extension. Let q be its unique global non-forking extension. For
each su�ciently small ε > 0, we have that p is contained in a relatively
open subset of (Sn(C))′ε of diameter ≤ 2ε. For any 0 < δ < ε, we have that
(Sn(C))′δ ⊇ (Sn(C))′ε, therefore q has open neighborhoods of arbitrarily small
diameter in (Sn(C))′ε = Sn(C) r C<ε. And thus q is relatively d-atomic in
Sn(C) r C<ε, and q is a pre-minimal global extension of p.

We still need to show that q is the unique pre-minimal global extension of
p. Assume that p has another pre-minimal global extension r. By the (⇒)
direction we would have thatMRε(r) = 1 for all su�ciently small ε > 0, but
that would contradict that Mdε(p) = 1 for all su�ciently small ε > 0. �

There is one additional hiccup in the development of strongly minimal
sets in continuous logic. Although we typically think of strongly minimal
types as coming from strongly minimal sets, it is not hard to show that the
following is true in discrete logic:

If p ∈ S1(A) is a type whose unique non-algebraic extension to some
parameter set B ⊇ A is contained in a strongly minimal set D,
de�nable over B, then there is a strongly minimal set E de�nable
over A containing p as its unique non-algebraic type.

This pleasant fact fails in continuous logic.

Example 5.10. An ω-stable theory with a strongly minimal type over ∅ but
no ∅-de�nable strongly minimal set.

Veri�cation. For each i let Si be the sphere in an in�nite dimensional Hilbert
space with radius 2−i (i.e. the set of vectors of norm 2−i). Let M be a metric
space whose universe is

⊔
i<ω Si, and let the distance between any points in

distinct Si be 1. Let T = Th(M).
The type space S1(∅) is topologically homeomorphic to ω + 1 with the

order topology. The unique non-isolated type is strongly minimal. If we
let {ai}i<ω be a sequence of points such that ai ∈ Si ⊆ M, then the set
{ai}i<ω ∪ {p} is de�nable, by essentially the same argument as in Example
5.2. �

Assuming we are working over models, the relationship between strongly
minimal types and strongly minimal sets is precisely as it is in discrete logic.
Curiously, this arguably relies on the same kind of behavior that gives us the
mild pathology of Example 5.2.
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Proposition 5.11. If p ∈ S1(M) is a strongly minimal (resp. pre-minimal)
type with M a model, then there is an M-de�nable strongly minimal (resp.
minimal) set D containing p (with no assumptions on S1(M) or T ).

Proof. For each k < ω, let Fk = S1(M)rM<2−k . Let ` < ω be large enough
that p ∈ Fk for any k ≥ `. By Lemma 4.7 part (i), we can �nd a closed set
A ⊆ S1(M) and a formula ϕ : S1(M)→ [0, 1] such that

• p ∈ Jϕ = 0K ⊆ A,
• p ∈ Jϕ = 0K ⊆ intA<ε for every ε > 0, and
• Jϕ ≤ 2−k−1K ∩A ∩ Fk = {p} for every ` ≤ k < ω.

Note that while Jϕ = 0K may contain types other than p, if q ∈ Jϕ = 0Kr{p},
then q /∈ Fk for every ` ≤ k < ω, so in particular q is algebraic and realized
in M.

For each k with ` ≤ k < ω, let Gk = A∩ J2−k−2 ≤ ϕ ≤ 2−k−1K. Note that
Gk∩Fk = ∅, since at most it could contain {p}, but it cannot contain p. This
implies that Gk ⊆ M<2−k =

⋃
a∈MB<2−k(a), so by compactness there is a

�nite set Mk ⊆ M such that Gk ⊆ M<2−k

k and by restricting to a subset if

necessary we may assume that Mk ⊆ G<2−k

k as well, i.e. dH(Gk,Mk) < 2−k.
Note that as a �nite union of elements of M, each Mk is an M-de�nable set.

Let D = Jϕ = 0K ∪
⋃
`≤k<ωMk. To see that D is closed, note that

Jϕ = 0K is clearly closed so we only need to argue that the accumulation
points of

⋃
`≤k<ωMk are all contained in D. Let q be an accumulation point

of
⋃
`≤k<ωMk and assume that ϕ(q) > 0. Find U , an open neighborhood of

q, such that U is disjoint from Jϕ = 0K. Find ε > 0 small enough that U
≤ε

is disjoint from Jϕ = 0K. By compactness there is a k < ω large enough that

(A ∩ Jϕ ≤ 2−kK)≤2−k is disjoint from U
≤ε
. This implies that D ∩ U≤ε is a

�nite set, so q must be in D. If ϕ(q) = 0 then q ∈ Jϕ = 0K ⊆ D, therefore D
is closed.

To see that D is de�nable, pick ε > 0 and note that D<ε/2 ⊇ Jϕ =
0K ∪

⋃
m≤k<ω Gk for some m < ω (since dH(Gm,Mm) < 2−m for every

m < ω), so we have

D<ε ⊇

Jϕ = 0K ∪
⋃

m≤k<ω
Gk

<ε/2

∪
⋃

`≤k<ω
M<ε
k .

So we just have to argue that Jϕ = 0K ⊆ int
(
Jϕ = 0K ∪

⋃
m≤k<ω Gk

)<ε/2
.

Find δ > 0 small enough that δ < ε
2 and Jϕ ≤ δK≤δ ∩ A ⊆ Jϕ = 0K ∪⋃

m≤k<ω Gk, which must be possible by compactness. Let q ∈ Jϕ < δK ∩
intA<δ. We have that d(q, A) < δ, so let r ∈ A such that d(q, r) < δ. This

implies that r ∈ Jϕ ≤ δK≤δ, so in particular r ∈ Jϕ = 0K ∪
⋃
m≤k<ω Gk.
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Therefore

Jϕ ≤ δK ∩ intA<δ ⊆ int

Jϕ = 0K ∪
⋃

m≤k<ω
Gk

<δ

⊆ int

Jϕ = 0K ∪
⋃

m≤k<ω
Gk

<ε/2

,

as required. So D ⊆ intD<ε for every ε > 0, and thus D is de�nable. By
construction every type q ∈ D r {p} is algebraic (and realized in M), so D
is a minimal set. If the unique non-algebraic type in D is strongly minimal
then D is a strongly minimal set as well, by Proposition 5.13 (the proof of
that proposition does not rely on this proposition). �

Really if A is any parameter set, p ∈ S1(A) is a strongly minimal type,
D is any de�nable set containing p, and M ⊇ A is a model, then we get an
A ∪ D(M)-de�nable strongly minimal set containing p. And we also have
the same for any open or open-in-de�nable set containing p.

5.1.4. Approximately (Strongly) Minimal Pairs. We can recover a fact anal-
ogous to Proposition 5.11 without assuming anything about the parameter
set, but we need a dictionaric theory and a slight weakening of the notion of
strongly minimal set.

De�nition 5.12.

(i) A pair (D,ϕ) of a de�nable set D ⊆ Sn(A) and an A-formula ϕ is
approximately minimal if the zeroset Jϕ = 0K ⊆ D is non-algebraic
and for every pair F,G ⊆ D of disjoint A-zerosets, every model
M ⊇ A, and every ε > 0, at least one of F ∩ Jϕ ≤ εK and G∩ Jϕ ≤ εK
is (< ε)-algebraic.

(ii) A pair (D,ϕ) is approximately strongly minimal if it is approximately
minimal over every set of parameters over which it is de�nable.

(iii) A de�nable setD is approximately (strongly) minimal if there is some
formula ϕ such that (D,ϕ) is approximately (strongly) minimal.

Obviously a (strongly) minimal set is approximately (strongly) minimal if
we just let ϕ be the distance predicate of the set. Note that for any kind of
minimality it is su�cient to check sets of the form Jϕ ≤ rK with ϕ restricted
and r rational.

Proposition 5.13.

(i) If (D,ϕ) is approximately minimal (over the set A), then there is a
unique non-algebraic A-type p ∈ Jϕ = 0K ⊆ D. We say that p is the
generic type of (D,ϕ).

(ii) If (D,ϕ) is approximately strongly minimal (resp. approximately min-
imal), then its generic type is strongly minimal (resp. pre-minimal).



STRONGLY MINIMAL SETS AND CATEGORICITY IN CONTINUOUS LOGIC 35

(iii) If (D,ϕ) is (approximately) minimal and its generic type is strongly
minimal, then (D,ϕ) is (approximately) strongly minimal (where a
pair (D,ϕ) is strongly minimal if D is strongly minimal).

Proof. (i). Assume that there are two distinct non-algebraic types, q0 and
q1 contained in Jϕ = 0K ⊆ Sn(A). Let F0, F1 ⊆ Jϕ = 0K be disjoint A-
zerosets such that pi ∈ Fi for both i < 2. Since for each ε > 0, at least
one of F0 and F1 must be (< ε)-algebraic, it must be that for some i < 2,
Fi(C) ⊆ C<ε for arbitrarily small ε > 0, so in particular Fi(C) ⊆ C, implying
that Fi is algebraic. This is a contradiction, therefore there cannot be two
non-algebraic types in Jϕ = 0K ⊆ Sn(A), but Jϕ = 0K is non-algebraic so
there must be at least one.

(ii). Let X = A if (D,ϕ) is approximately minimal over A, and let X = C
if (D,ϕ) is approximately strongly minimal. We need to show that p is d-
atomic in the set of non-(< ε)-algebraic types in Sn(X). For any ε > 0, let
Fε denote the (closed) set of non-(< ε)-algebraic types in Sn(X). Fix ε > 0
small enough that p ∈ Fε. Find δ > 0 small enough that δ < 1

2ε and p /∈
(D ∩ Jϕ ≥ 1

2εK)
≤δ, and then consider U =

(
D<δ r (D ∩ Jϕ ≥ 1

2εK)
≤δ) ∩ Fε.

Note that p ∈ U and that U is relatively open in Fε. We want to show that
U ⊆ B≤δ(p). Let q ∈ U . By construction, this implies that d(q,D) < δ
so there is some r ∈ D such that d(q, r) < δ. Also by construction, r
cannot be in D ∩ Jϕ ≥ 1

2εK. Assume that r ∈ D ∩ J0 < ϕ < 1
2εK. There

must be some 0 < γ < σ < 1
2ε such that r ∈ D ∩ Jγ ≤ ϕ ≤ σK, but

D ∩ Jγ ≤ ϕ ≤ σK is (< 1
2ε)-algebraic, so in particular r /∈ Fε/2. But this

is a contradiction since for any model M ⊇ X (i.e. M ⊇ A or M = C)
and extension q′ to Sn(M), there is an extension r′ to Sn(M) such that
d(q′,M) ≤ d(q′, r′) + d(r′,M) < δ + 1

2ε < ε. But q ∈ Fε, so q has an
extension q′′ with d(q′′,M) ≥ ε.

Therefore r must be in Jϕ = 0K. Assume that r 6= p. This implies that
r is algebraic so that in particular r ∈ M for any M ⊇ X, which is again
a contradiction since for any extension q′ of q there is an extension r′ of r
such that d(q′,M) ≤ d(q′, r′) + d(r′,M) < δ + 0 < 1

2ε < ε. Hence it must
be the case that r = p. Since this is true for any q ∈ U , this implies that
U ⊆ B<δ(p) ⊆ B≤δ(p). Since we can do this for any su�ciently small δ > 0,
we have that p is relatively d-atomic in Fε, and the same is true for any
su�ciently small ε > 0.

(iii). If D is approximately minimal but not approximately strongly min-
imal then its generic type has two distinct non-algebraic extensions to some
set of parameters, so it is not strongly minimal. The only thing to prove
is that if D is minimal and its generic type is strongly minimal then D is
strongly minimal (and not just approximately strongly minimal). This fol-
lows from the fact that if p is the global strongly minimal type in D ⊆ Sn(C),
then any q ∈ Dr{p} must be an extension of some type in D ⊆ Sn(A). If it
is an extension of p � A, then it is algebraic and if it is an extension of some
r 6= p � A then it also must be algebraic. �
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It is easy to come up with an example of a de�nable set D such that
(D,ϕ) and (D,ψ) are approximately strongly minimal but have di�erent
generic types. The union of two disjoint strongly minimal sets for instance.

Corollary 5.14.

(i) If D ⊆ Sn(A) is minimal, then there is a unique non-algebraic type
p ∈ D.

(ii) If D is strongly minimal, then there is a unique non-algebraic type
p ∈ D ⊆ Sn(A) for any set of parameters A over which D is de�nable.

The strongly minimal type whose existence is guaranteed by Corollary 5.14
is also referred to as the generic type of the corresponding set.

Finally we come to the advantage we gain by passing to this weaker notion,
as promised at the beginning of this section. Given a strongly minimal type
in a dictionaric theory, we can always �nd an approximately strongly minimal
pair pointing to that type and de�nable over the same set that the type is
over, and likewise with pre-minimal types and minimal sets.

Proposition 5.15.

(i) If Sn(A) is dictionaric and p ∈ Sn(A) is a pre-minimal type, then
there is an A-de�nable approximately minimal pair (D,P ) pointing
to p.

(ii) If D ⊆ Sn(A) is approximately minimal over a model M, then there
is a (D(M) ∪ A)-de�nable minimal set E ⊆ D pointing to the same
type.

(iii) If D ⊆ Sn(A) is approximately strongly minimal (as part of the pair
(D,P )), then for any model M ⊇ A, there is a (D(M)∪A)-de�nable
strongly minimal set E ⊆ D pointing to the same type. Furthermore,
for any model N �M, E(N) r JP (N) = 0K ⊆ D(M).

Proof. (i). This follows from applying Lemma 4.7 to the closed set {p} which
is relatively de�nable in the set Fi ⊆ Sn(A), where Fi is the set of all non-
(< 2−i−k)-algebraic types and k > 0 is chosen so that p ∈ Fi for every i < ω.
The lemma gives us a de�nable set D and a formula ϕ such that for each
i < ω, D∩Fi∩Jϕ ≤ 2−iK = p. To see that (D,ϕ) is an approximately minimal
pair, pick ε > 0. Find i < ω such that 2−i−1 < ε ≤ 2−i and let G,H ⊆ D be
disjoint zerosets. At most one of G or H can contain p, so assume without
loss of generality that p /∈ G. We have that G ∩ Fi ∩ Jϕ ≤ 2−iK ⊆ p, so
G ∩ Fi ∩ Jϕ ≤ εK ⊆ p as well, but p /∈ G, so G ∩ Fi ∩ Jϕ ≤ εK. This implies
that G ∩ Jϕ ≤ εK is contained in the set of (< 2−i−k)-algebraic types so in
particular since 2−i−k ≤ 2−i−1 < ε, we have that every type in G ∩ Jϕ ≤ εK
is (< ε)-algebraic. Therefore (D,ϕ) is an approximately minimal pair.

(ii). This follows from the comment after Proposition 5.11.
(iii). Most of this follows from part (ii) and Proposition 5.13. The only

thing we need to verify is the last sentence, which follows from the fact that
anything in D(N) not realizing the strongly minimal type over M must be
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algebraic overM in the �rst place and so realized in it. The strongly minimal
type is contained in Jϕ = 0K, so the result follows. �

Note that parts (ii) and (iii) do not require any assumptions about the
type space. The following example shows that the dictionaricness stipulation
in part (i) cannot be removed.

Example 5.16. A non-dictionaric superstable theory with a strongly mini-
mal type over ∅ but no approximately strongly minimal sets over ∅.

Veri�cation. Let L = {P0, P1} be a language with two unary 1-Lipschitz
[0, 1]-valued predicates and let M be an L-structure whose universe is ω ×
[0, 1] and whose metric is given by d((n, x), (m, y)) = 1 if n 6= m and
d((n, x), (n, y)) = 2−n+d(x, y) if x 6= y. Let P0((n, x)) = 2−n and P1((n, x)) =
x. Finally let T = Th(M).

The type space S1(∅) is homeomorphic to (ω + 1)× [0, 1].
Note that if a de�nable set has non-empty intersection with one of the

sets of types of the form {n}× [0, 1] for n < ω, then it must contain all of it,
because this set is metrically isolated from the rest of the type space and is
topologically connected but uniformly metrically discrete. So to show that
none of the types in {ω}× [0, 1] are pointed to by an approximately strongly
minimal set, all we need to do is show that if a de�nable set contains one
such type then it must contain some type in {n} × [0, 1] for some n < ω.
This follows immediately because if p ∈ {ω} × [0, 1], then it is the limit of
types in {n}× [0, 1] for n < ω that are uniformly metrically separated. So if
F is a closed set whose intersection with {n}× [0, 1] for n < ω is empty and
whose intersection with {ω} × [0, 1] is precisely p, then p /∈ intF<ε for any
0 < ε < 1 and so F is not de�nable.

Thus if D is a de�nable set containing some p ∈ {ω}× [0, 1], then D must
contain all of {n} × [0, 1] for su�ciently large n < ω. And so since D is
closed it must contain all of {ω} × [0, 1]. If we let ϕ be a formula such that
ϕ(p) = 0, then for any ε > 0, D ∩ Jϕ ≤ εK contains some q ∈ {ω} × [0, 1]
with q 6= p. �

In all of the examples of approximately minimal sets we know of there is an
obvious pseudo-metric ρ on D such that D/ρ is a minimal set whose generic
type corresponds exactly to the generic type in the original set. For instance,
in Example 5.10 there is a de�nable pseudo-metric ρ such that ρ(x, y) = 0 if
and only if either x and y are both in the same Hilbert space sphere or they
are not in a Hilbert space sphere and x = y. It is not clear if this is always
possible. In the case of discrete strongly minimal types, however, it is so.

De�nition 5.17. A type p is discrete if there is an ε > 0 such that if a, b |= p
and d(a, b) < ε, then a = b.

Proposition 5.18. If (D,ϕ) is an approximately minimal pair over some
parameter set A pointing to a discrete pre-minimal type p in a dictionaric
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type space, then there is an A-de�nable set E ⊆ D containing p and an A-
de�nable equivalence relation ρ on E such that E/ρ is minimal and such that
the quotient map is a bijection when restricted to the pre-minimal type. (In
particular this means that if p is strongly minimal, then the corresponding
type in E/ρ is strongly minimal as well.)

Proof. Let ε > 0 be such that if a, b |= p and d(a, b) < ε then d(a, b) = 0.
By compactness there must be a δ > 0 such that for any a, b ∈ D(C) ∩

Jϕ(C) ≤ δK, if d(a, b) < 3
4ε, then d(a, b) < 1

4ε. This implies that in the

zeroset D ∩ Jϕ ≤ δK, the formula ρ(x, y) = min
{

4
3ε(d(x, y) ·− 1

4ε), 1
}
is a

{0, 1}-valued equivalence relation which is equality on the set of realizations
of p. Let E be a de�nable subset of D such that Jϕ = 0K ⊆ E ⊆ Jϕ < δK.
Clearly ρ is the required equivalence relation on E. �

The leaves the question in general.

Question 5.19. If D ⊆ Sn(A) is approximately minimal with generic type p
then, does there always exist an A-de�nable pseudo-metric ρ on D such that
D/ρ is minimal with generic type q and the quotient map D → D/ρ restricted
to the set of realizations of p is a bijection with the set of realizations of q?

5.1.5. Strongly Minimal Theories That Do Not Interpret In�nite Discrete
Theories. Obviously if M is a discrete strongly minimal structure and X
is some compact metric space with a transitive automorphism group, then
M × X is strongly minimal, but this example is in some sense trivial, as
M and M × X are bi-interpretable. In [24], Noquez raised the question of
whether or not there are any non-trivially continuous examples of strongly
minimal theories. Here is a minimally non-trivial continuous example, giving
a positive answer:

Example 5.20. Consider R with the metric d(x, y) = |x−y|
1+|x−y| . Th(R,+) is

strongly minimal but does not interpret any in�nite discrete structure.

We will verify these statements in Theorems 5.22 and 5.41.
One can similarly show that the same is true of (Rn,+) for any n < ω.

The underlying additive group of a p-adic �eld, Qp, with the appropriate
metric, is likewise strongly minimal, although it does have a discrete strongly
minimal imaginary.

It turns out that, in the context of strongly minimal theories, this condi-
tion of being unable to interpret an in�nite discrete structure has a very tight
topological characterization in terms of models and is also very constraining
in the special case of strongly minimal groups.

De�nition 5.21. A continuous theory T is inherently non-discrete if it does
not interpret an in�nite discrete structure.

The goal of the rest of this subsection is to prove the following character-
ization of inherently non-discrete strongly minimal theories.
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Theorem 5.22. Let T be a continuous strongly minimal theory. T is in-
herently non-discrete if and only if some model of T has a non-compact
connected component.

Proof of ⇒. We will prove the contrapositive. Assume that every model of
T has compact connected components. (Although note for later that we
only actually use the fact that connected components of generic elements
are compact.) For any ε > 0, we will let Eε be the equivalence relation on
models of T induced by aEεb if and only if there exists a sequence c0, . . . , cn
with c0 = a, cn = b and d(ci, ci+1) < ε for every i < n. We want to show the
following.

(∗) There is a ξ > 0 such that the equivalence relation Eξ is de�nable (by
a {0, 1}-valued formula) and has in�nitely many equivalence classes
in any model of T .

From which it is immediate that T is not inherently non-discrete as the
imaginary quotient by this equivalence relation is in�nite and discrete.

Let M be some model of T and let p be the generic type over M.
Claim: There is some ε > 0 such that for any a ∈ C with a |= p, the

Eε-equivalence class of a is compact.
Proof of claim. Fix a ∈ C with a |= p. Let F be the connected component

of a. By assumption F is compact, and by Lemma 5.7, there is some δ > 0
such that every closed δ-ball in any model of this theory is compact. Let
b0, . . . , bn−1 be elements of F chosen so that U =

⋃
i<nB<δ(bi) covers F .

Since clU ⊆
⋃
i<nB≤δ(bi) is compact and F is a connected component of it

(and in particular is closed), we have that there is some clopen-in-clU set
Q ⊆ U such that F ⊆ Q. Since Q is relatively closed in clU , it is closed, and
since Q is relatively open in U , it is open, so it is actually clopen. Moreover,
there is some ε > 0 such that Q≤ε is disjoint from the complement of Q,
since clU is compact. Clearly we have that the Eε-equivalence class of a is
contained in Q. It's not hard to see that an Eε-equivalence class must be
closed (for any ε > 0), so we have that it is compact. �claim

Fix ε > 0 as in the claim. Now note that for any b |= p, the Eε-equivalence
class of b must be isometric to the Eε-equivalence class of a, since there is an
automorphism of the monster model taking b to a. By the compactness of
the equivalence class, there exists a natural number n such that if aEεc, then
there exists a sequence e0, . . . , en such that a = e0, c = en, and d(ei, ei+1) <
ε for each i < n (even if we only need a shorter chain, we can just use
repetitions). This fact is uniformly true for any b |= p. By compactness,
there is a ξ > 0 with ξ < ε such that this statement is still true and such
that for realizations of p, the Eξ-equivalence classes are the same as the Eε-
equivalence classes. By construction, we have that if aEξb and ¬aEξc, then
d(b, c) ≥ ε.
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Now consider the formulas

λ(x, y) := inf
z1,...,zn

max
i≤n

d(zi, zi+1) ·− ε,

η(x, y) := sup
z1,...,zn

min
i≤n

ξ ·− d(zi, zi+1), and

χ(x) := inf
y

max{λ(x, y), η(x, y)},

where z0 is understood to mean x and zn+1 is understood to mean y (note
the +1, but also note that the +1 is not actually essential, rather it just
makes the formulas λ and η easier to write).

To unpack what these mean, given a and b, λ(a, b) > 0 implies that for
any sequence c0, ..., cn+1 with c0 = a and cn+1 = b, for some i ≤ n, we have
d(ci, ci+1) > ε (although note that λ(a, b) > 0 is actually slightly stronger
than this statement in insu�ciently saturated models). On the other hand,
η(a, b) > 0 means that there is a chain c0, . . . , cn+1 with c0 = a, cn+1 = b,
and d(ci, ci+1) < ξ for every i ≤ n. So, putting it together, χ(a) > 0 implies
that for every b, one of these two conditions holds. By the above statements
regarding any a satisfying p, we have that χ(a) > 0.

So we have that Jχ(x) > 0K is an open neighborhood of p in S1(M), so
in particular, Jχ(x) = 0K is compact (note, also, that χ always takes on
non-negative values).

Claim: There is a natural number k, such that for any a and b, if aEξb,
then this is witnessed by a chain of length no more than k.

Proof of claim. Let X be a �nite subset of Jχ(C) = 0K such that Jχ(C) =
0K ⊆ X<ξ. For any a ∈ Jχ(C) = 0K, let Fa ⊆ Jχ(C) = 0K be the Eξ-
equivalence class of a computed inside Jχ(C) = 0K, i.e. the set of all elements
b of Jχ(C = 0)K satisfying aEξb with a witnessing chain contained entirely in
Jχ(C) = 0K. Note that by construction, Jχ(C) = 0K =

⋃
x∈X Fx. Also note

that each Fa is closed, and therefore compact (as a set of elements of C).
For each x ∈ X, we have that

Fx ⊆ B<ξ(x) ∪ (B<ξ(x))<ξ ∪ ((B<ξ(x))<ξ)<ξ ∪ . . . .

By the compactness of Fx, some �nite initial segment of this is su�cient to
cover Jχ(C) = 0K. Let ` be the longest length of one of these initial segments.
Let k = `+ 1 + n.

To see that this k is su�cient, we need to consider three cases.

(1) χ(a) > 0. In this case, by our previous discussion of χ(x), we know
that there is a chain of length no more than n+ 1 witnessing aEξb,
which is no more than k.

(2) χ(a) = 0 and the chain witnessing aEξb is entirely contained in
Jχ(C) = 0K. In this case, we have that b ∈ Fa. There is some x ∈ X
with d(a, x) < ξ, so by the de�nition of ` we get a chain of length
1 + ` witnessing that aEξb.

(3) χ(a) = 0 and the chain witnessing aEξb is not entirely contained in
Jχ(C) = 0K. In this case, let c0, . . . , cm, with c0 = a and cm = b, be
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the chain witnessing that aEξb. Let ci be the �rst such that χ(ci) = 0
but χ(ci+1) > 0. By construction, we can �nd a chain of length no
more than ` witnessing that aEξci and a chain of length no more
than n witnessing that ci+1Eξb. Concatenating these chains gives a
witnessing chain of length no more than `+1+n, which is k. �claim

Now, since this is true for all a and b, by compactness, there must actually
be some δ > 0 with δ < ξ such that for any a and b, with aEξb, there is a
chain c0, . . . , ck, with c0 = a, ck = b, and d(ci, ci+1) < δ for all i < k. We
have just established that for any a and b, if aEξb, then η(a, b) > ξ − δ, but
if ¬aEξb, then η(x, y) = 0. So consider the formula

E(x, y) := min

{
(ξ − δ) ·− η(x, y)

ξ − δ
, 1

}
.

We now have that this E(x, y) is {0, 1}-valued and has E(x, y) = 0 if and
only if xEξy, as required. To see that this equivalence relation has in�n-
itely many equivalence classes in every model, note that if it had �nitely
many equivalence classes then that model would itself be compact, since its
equivalence classes are compact, which is a contradiction. �

It is not hard to show that if some model of T has non-compact connected
components, then every non-prime model has non-compact connected com-
ponents. The set E in the example mentioned in the text after Example 5.2
(i.e. the de�nable subset of R) shows that this can fail for the prime model.

In order to prove the other direction of Theorem 5.22 we will need to
collect some lemmas.

Lemma 5.23. If T is a strongly minimal theory, M |= T , and for any
a realizing the generic type over M, the connected component of a (in the
monster model) is compact, then no model of T has a non-compact connected
component.

Proof. Since the proof of Theorem 5.22 only uses that the connected com-
ponents of generic elements are compact, we have that there is some ξ > 0
such that the equivalence relation Eξ (as de�ned in that proof) has compact
equivalence classes. For any a the connected component of a is contained in
the Eξ-equivalence class of a, and so since connected components are always
closed, we have that the connected component of a is compact. �

The following is a (weak) analog of a well known fact in discrete logic that
given two strongly minimal sets in an uncountably categorical theory, there
is a de�nable �nite-to-�nite correspondence between them.

Lemma 5.24. Let T be a strongly minimal theory. Suppose that I is a
strongly minimal imaginary. There exists a formula ϕ(x, y) (using at most
the parameters needed to de�ne I), with x a variable in the sort I and y
a variable in the home sort, such that for any generic a ∈ I, the zeroset
of ϕ(a, y) is algebraic and has each realization generic over M and for any
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generic b in the home sort, the zeroset of ϕ(x, b) is algebraic and has each
realization generic over M.

Proof. Let A be the set of parameters needed to de�ne I and let M be a
separable model of T containing A. Let c be an element of I(C) that is
generic over M, and let N � M be a model of T that is prime over Mb.
Because N is a proper elementary extension of M we must have that H(N)
is strictly larger than H(M), where H is the home sort. Let b be some
element of H(N) r H(M). We necessarily have that b is generic over M,
but tp(c/Mb) is d-atomic, which by strong minimality means that it must
be algebraic. Let ϕ0(x, y) be a formula such that ϕ0(b, y) is the distance
predicate of tp(c/Mb).

A symmetric argument gives that tp(b/Mc) is also algebraic and therefore
d-atomic, so let ϕ1(x, y) be a formula such that ϕ1(x, c) is the distance
predicate of tp(b/Mc). The formula ϕ(x, y) = max{ϕ0(x, y), ϕ1(x, y)} has
the required properties. �

Remark 5.25. As an aside, one might wonder whether or not two strongly
minimal sets in an inseparably categorical theory always have a de�nable
compact-to-compact correspondence. The answer is yes. In Lemma 5.24
(which, of course, generalizes to arbitrary inseparably categorical theories),
the set Jϕ(x, y) = 0K ∩ F (x, y), where F (x, y) is the partial type consisting
of all types for which at least one of the projections is generic, is relatively
de�nable in F (x, y). By Proposition 4.6, we can �nd a de�nable set D(x, y)
such that D(x, y)∩F (x, y) = Jϕ(x, y) = 0K∩F (x, y). By strong minimality,
it is easy to show that D(x, y) is a compact-to-compact relation between the
two sets, but it may fail to be either total or surjective. By uniform local
compactness, for su�ciently small ε > 0, JD(x, y) ≤ εK is still a compact-to-
compact relation. By Lemma 4.14, we may choose ε so that JD(x, y) ≤ εK
is de�nable. Since the interior of JD(x, y) ≤ εK contains the `rank 2' type
(type of a pair of mutually generic elements), we have (where A and B
are the strongly minimal sets in question) that the sets U = {a ∈ A :
¬(∃b ∈ B)D(a, b) ≤ ε} and V = {b ∈ B : ¬(∃a ∈ A)D(a, b) ≤ ε} are
both pre-compact, so we have that JD(x, y) ≤ εK ∪ (A × B) is a de�nable
compact-to-compact correspondence between A and B.

This is still true for any pair of non-orthogonal strongly minimal types in
an arbitrary theory, but a minor technicality is that one would need to show
that the type spaces corresponding to A×B are dictionaric.

The original correspondence is actually slightly nicer than merely de�n-
able. It has the property that for any generic a ∈ A, the set Jϕ(a, y) = 0K is
de�nable and likewise for any generic b ∈ B as well as the property that the
distance predicates of these de�nable sets are uniformly de�nable, i.e. there
is a formula ψ(x, y) = 0 such that for any generic a ∈ A, ψ(a, y) = 0 is the
distance predicate of Jϕ(a, y) = 0K (with a similar statement for B). This
additional niceness is not always possible. Consider R as a metric space and
the R-de�nable subset E = {± ln(1 + n) : n < ω} (which is very similar
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to the de�nable set mentioned after Example 5.2). Although the strongly
minimal types in the home sort H and E are non-orthogonal in that they
are literally the same type, there is no compact-to-compact correspondence
between H and E with this additional property. To see this, note that if a
formula χ(a, y) is a distance predicate for any parameter a, then the func-
tion a 7→ Jχ(a, y) = 0K is continuous with regards to the Hausdor� metric.
Assume that ϕ(x, y) = 0 is a de�nable compact-to-compact correspondence
between H and E, where x is a variable of sort H and y is a variable of sort
E. Then consider the set Jϕ(x, 0) = 0K. This must contain some a ∈ H. By
continuity, we have that ϕ(a′, 0) must be 0 for all a′, but this implies that 0
is related to a non-compact set of a′'s in A, which is a contradiction.

In this example it can be arranged that Jϕ(x, b) = 0K is uniformly de�nable
as a function of b, but it is not too di�cult to show that if we take E ∪R≥0

and E ∪R≤0 as our two strongly minimal sets, then neither direction can be
taken to be uniformly de�nable.

Now we can �nish the proof of the characterization.

Proof of Theorem 5.22 ⇐. Let M be the prime model of T . Assume that
some model N �M of T has a non-compact connected component C. If C
does not contain an element that is generic over M, then by Lemma 5.23
there is a model of T that contains a non-compact connected component C ′

which contains an element that is generic over M, so we may assume without
loss of generality that C contains an element generic over M. Let a be some
such generic element.

Now assume that T is not inherently non-discrete. Let I be an imaginary
sort of T that is in�nite and discrete. Since T is inseparably categorical,
there is a strongly minimal set D ⊆ I (possibly over some larger set of
parameters). Let J be the imaginary sort corresponding to D. Let N �M
be a separable elementary extension containing the parameters necessary to
de�ne D. By Lemma 5.24, there is an M-formula ϕ(x, y), with x a variable
in J and y a variable in the home sort, such that for any a in J(C), generic
over N, the set of b's in the home sort for which ϕ(a, b) = 0 holds is compact
and consists only of elements generic over N.

Fix b ∈ H(C) generic, and note that the connected component of b is
non-compact. By compactness there must exist an ε > 0 such that for any
generic a, if ϕ(a, b) > 0, then ϕ(a, b) > ε. So consider the formula ψ(x, y) :=
min{1

εϕ(x, y), 1}. We have that for generic a, ψ(a, b) ∈ {0, 1}. This is part
of the type of b, so for any generic b this must be true as well. By uniform
continuity of ψ(x, y), this implies that there is a δ > 0 such that if generic
b, b′ ∈ H(C) satisfy d(b, b′) < δ, then ψ(a, b) = ψ(a, b′), but this implies
that for any b′ in the connected component of b, ψ(a, b′) = ϕ(a, b′) = 0,
which is a contradiction. Therefore no such I can exist, and T is inherently
non-discrete. �

Corollary 5.26. For any strongly minimal theory T , the following are equiv-
alent:
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• T is inherently non-discrete.
• Some model of T has a non-compact connected component.
• Every generic element of a model of T has a non-compact connected
component.
• T does not have a ∅-de�nable {0, 1}-valued equivalence relation on
its home sort with in�nitely many equivalence classes.

The example given immediately after Example 5.2 (i.e. R with the appro-
priate metric), as well as some of the examples given in Remark 5.25, show
that the prime model may fail to have a non-compact connected component
in an inherently non-discrete strongly minimal theory.

After all of this, it is natural to wonder about the kinds of (pre-)geometries
that can occur in inherently non-discrete strongly minimal theories. There
are a myriad of speci�c questions in this vein. It is possible that charac-
terizing inherently non-discrete strongly minimal theories might be easier
than characterizing discrete strongly minimal theories. A negative answer
to either of the following two questions would be an indication that inher-
ently non-discrete strongly minimal sets admit less complexity than discrete
strongly minimal sets.

Question 5.27. Is there an inherently non-discrete strongly minimal set
with the geometry of an algebraically closed �eld?

Question 5.28. Is there an inherently non-discrete strongly minimal set
with non-locally modular, �at pregeometry?

A di�cult-to-rigorize follow-up question would be this: Can a Hrushovski
construction build an inherently non-discrete strongly minimal set?

Question 5.29. Is there an inherently non-discrete strongly minimal set
whose geometry is not isomorphic to the geometry of any discrete strongly
minimal set?

Is there a continuous, but not inherently non-discrete, strongly minimal
theory with the same?

This last question becomes trivial on cardinality grounds if we consider
pregeometries, rather than geometries.

5.1.6. Characterization of Strongly Minimal Groups. In this section we will
give a topological group theoretic characterization of strongly minimal groups
in continuous logic and identify which among them are inherently non-
discrete.

De�nition 5.30. A theory of groups is a theory T in a language containing
a binary function symbol x · y (which we will freely write as concatenation),
a unary function symbol x−1, and a constant symbol e such that T implies
the following.

• supxyz d(x(yz), (xy)z) = 0
• supx d(ex, x) = 0
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• supx d(x−1x, e) = 0

A group structure is a model of a theory of groups.

Note that despite appearances, IHS is not an example of a theory of groups.
In fact, it is possible to show that IHS does not even interpret a non-compact
group. If we had taken the whole Hilbert space as the structure, rather than
just the unit ball, and modi�ed the metric accordingly, then the result theory
would be a theory of groups.

The following was originally shown in [3, Prop. 3.13]. We have given a
full proof here for completeness.

Proposition 5.31. Let T be a theory of groups. There is a de�nable bi-
invariant metric ρ that is uniformly equivalent to d (the original metric).

Proof. Consider the formula ρ(x, y) = supz,w d(zxw, zyw). First note that
the formula is clearly bi-invariant in the sense that ρ(x, y) = ρ(uxv, uyv)
for any x, y, u, v. Also note that it is clearly symmetric, non-negative, and
satis�es ρ(x, x) = 0.

To verify the triangle inequality, consider a, b, c and assume we are working
a su�ciently saturated model (since the triangle inequality is �rst-order, this
will imply the same for all models of the theory). For any f, g we have that
d(fag, fcg) ≤ d(fag, fbg) + d(fbg, fcg) ≤ ρ(a, b) + ρ(b, c), so the triangle
inequality holds.

This establishes that ρ(x, y) is a pseudo-metric. To establish that it is a
metric we need to show that it is uniformly equivalent to d. Since it is a
de�nable pseudo-metric, it is automatically uniformly dominated by d, so
we only need to show that d is uniformly dominated by it. By compactness,
it is enough to show that in any model M if ρ(a, b) = 0, then d(a, b) = 0.
Let a and b in M have ρ(a, b) = 0. Pass to an elementary extension N �M
containing c and f such that d(caf, cbf) = 0, so in particular caf = cbf .
By the group axioms we have that a = c−1caff−1 = c−1cbff−1 = b, i.e.
d(a, b) = 0. By elementarity, this is true in M as well, so we are done. �

Proposition 5.31 seems to be in con�ict with the well known fact that there
are metrizable groups that do not admit a bi-invariant metric. There is a
hidden assumption here, which is that the group operations are uniformly
continuous, and not merely continuous.

Our proof that strongly minimal groups are Abelian in continuous logic
is heavily based on the proof of the analogous statement in [11, Cor. 3.5.5],
originally proven in [26].

One should think of the following condition as being a natural analog of
having �nite order.
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De�nition 5.32. Given a topological group G, we say than an element a
has pre-compact orbit if the orbit of a, aZ, is pre-compact (i.e. has compact
closure).14

Lemma 5.33. Let G be a topological group with a topology induced by the
metric d. If a ∈ G has pre-compact orbit, then for every ε > 0 there are
arbitrarily large ` such that d(a`, e) < ε.

Proof. For any δ > 0, the set
⋃
n∈ZB<δ(a

n) covers the closure of the orbit of
a. By compactness we can �nd a �nite set X ⊂ Z such that

⋃
n∈X B<δ(a

n)
covers the closure of the orbit of a, and therefore the orbit of a. This implies
that for anym < ω there exists n ∈ X and k > n+m such that d(an, ak) < δ.
Since we can do this for any δ > 0 and by considering aka−n, we have that
there are arbitrarily large ` such that d(a`, e) < ε. �

Lemma 5.34. Let G be a metric group with bi-invariant metric d. If all ele-
ments of G have pre-compact orbit and all elements of Gr{e} are conjugate,
then |G| ≤ 2.

Proof. We may assume that G has more than one element. Fix a ∈ Gr {e}.
We need to show that a2 = e. If a2 = e, then we are done, so assume that
a2 6= e.

For any ε > 0, �nd the smallest positive nε such that d(anε , e) < ε, which,
note, is larger than 1 whenever ε ≤ d(a, e). Note that by the conjugacy
condition and the bi-invariance of the metric, nε does not depend on the
choice of a.

Claim: nε is either 1 or a prime number.
Proof of claim. Assume that nε is not 1 and is the composite number mk,

with m, k > 1. By assumption, am 6= e, so since anε and am are conjugate,
we can �nd b such that b−1anεb = am. By the bi-invariance of the metric
we have that d(anε , e) = d(b−1anεb, b−1eb) = d(am, e) < ε, contradicting the
minimality of nε. �claim

Suppose that nε is not eventually 2 as ε→ 0. Since a−1 6= e, we can �nd a

b ∈ G such that b−1ab = a−1. This implies that for any k, b−kabk = a(−1)k .
By our assumption, for any γ > 0, there is an ε > 0 with ε < δ such that
nε is odd and such that if d(c, e) < ε, then d(c−1ac, a) < γ. Now we have
that b−nεabnε = a−1, since nε is odd, implying that d(a, a−1) < γ. Since we
can do this for any γ > 0, we have that a = a−1, which is a contradiction.
Therefore nε must be eventually 2 as ε → 0, but this implies that in fact
a2 = e.

So, by the conjugacy condition, we have that every element a of G satis�es
a2 = e. It is not hard to show that this implies that G is Abelian, but this
implies that every element's conjugacy class consists solely of itself, and
hence |G| = 2, as required. �

14Elements of a topological group with this property are referred to in some literature
as just `compact.'
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Lemma 5.35. If G is a strongly minimal group and H is a type-de�nable,
non-compact subgroup of G, then H = G.

Proof. If H is a proper subgroup of G, then the cosets of H are also non-
compact type-de�nable subsets of G. Furthermore, H is disjoint from its
non-trivial cosets, which contradicts strong minimality. �

Proposition 5.36. Let T be a strongly minimal theory of groups. T is
Abelian.

Proof. For the sake of this proof we will write A\B to mean the collection
of right cosets of A in the set B, i.e. {Ab : b ∈ B}, as opposed to the set
theoretic relative complement, which is written ArB elsewhere in this paper.
The ArB notation does not occur in this proof, and the A\B notation does
not occur outside of this proof.

Assume that T is not Abelian. By Proposition 5.31 we may assume that
T has a bi-invariant metric. Let Z be the center of G (i.e. the set of all
elements g satisfying gh = hg for all h ∈ G). For any g ∈ G, let C(g) be the
centralizer of g (i.e. the set of all elements h satisfying h−1gh = g). Note that
the orbit of g is contained in C(g). This is a type-de�nable group de�ned
by the closed condition d(h−1gh, g) = 0. For any g ∈ G with g /∈ Z, C(g)
is a type-de�nable proper subgroup of G, so by Lemma 5.35 it is compact,
hence g has pre-compact orbit.

Claim: For any g ∈ G with g /∈ Z, the set of conjugates of g, aG :=
{h−1gh : h ∈ G}, is not pre-compact (i.e. has compact closure).

Proof of claim. We want to argue that there is a natural topological
isomorphism between (the metric closure of) C(g)\G and (the metric closure
of) aG, where C(g)\G is made into a metric space by the Hausdor� metric
on sets, which, by bi-invariance and the fact that C(g)\G is a set of cosets,
is equal to ρ(x, y) = infz∈C(g) d(x, zy). Then we will show that C(g)\G is
not pre-compact.

It is a basic algebraic fact that there is a natural bijection between C(g)\G
and gG. Explicitly, for any a and b, we have that if a−1ga = b−1gb, then
gab−1 = ab−1g, so ab−1 ∈ C(g), implying that C(g)b = C(g)ab−1b = C(g)a.
This gives a natural function from gG to C(g)\G. To see that it is surjective,
note that for any C(g)a, the element a−1ga maps to C(g)a. To see that it is
injective, if G(g)a = G(g)b, then this implies that a = cb for some c ∈ C(g),
so we have that a−1ga = b−1c−1gcb = b−1gb, as required.

All we need to do is argue that this bijection is metrically uniformly contin-
uous with metrically uniformly continuous inverse. I claim that for any ε > 0,
there is a δ > 0 such that if d(ag, ga) < δ, then d(a,C(g)) < ε. This follows
from compactness and the fact that C(g) is an algebraic set. For any given
ε > 0, �nd such a δ > 0 and consider a and b such that d(a−1ga, b−1gb) < δ.
By bi-invariance, this implies that d(gab−1, ab−1g) < δ, so we have that there
is some c ∈ C(g) with d(ab−1, c) < ε. This implies that d(a, cb) < ε, so we
have that the distance between C(g)a and C(g)b in the ρ-metric is less than
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ε. Since we can do this for any ε > 0, we have that the map is uniformly
continuous.

Now we just need to show that the map has uniformly continuous inverse.
For any ε > 0, �nd a δ > 0 small enough that for any c if d(a, b) < δ, then
d(a−1ca, b−1cb) < ε. Assume that C(g)a and C(g)b have ρ-distance less
than δ. By bi-invariance, this implies that there is some c ∈ C(g) such that
d(a, cb) < δ. This implies, by the choice of ε, that d(a−1ga, b−1c−1gcb) < ε,
and so d(a−1ga, b−1gb) < ε. Since we can do this for any ε > 0, we have
that the inverse of the bijection is uniformly continuous.

To show that C(g)\G is not pre-compact, �rst note that we have already
established that C(g) is compact. If C(g)\G were pre-compact, then this
would imply that for any ε > 0 there is a �nite set of elements X ⊆ C(g)\G
such thatG ⊆

⋃
x∈X q

−1(x)<ε, where q : G→ C(g)\G is the natural quotient

map. Since each pre-image q−1(x) is isometric to C(g), this is enough to
imply that G is compact, which contradicts our assumptions. �claim

Now we have that for any a and b not in Z, the metric closure of aG is
equal to the metric closure of bG, because these sets are de�nable and non-
compact, and so, by strong minimality, must have non-empty intersection in
some elementary extension, which implies in the elementary extension that
there is some c such that c−1ac = b. By passing to a su�ciently saturated
elementary extension, we may assume that every pair a and b not in Z
are conjugate. This implies that in G/Z any two non-identity elements are
conjugate (because conjugacy commutes with group homomorphisms). We
also still have that every element has pre-compact orbit (after endowing
G/Z with the Hausdor� metric on cosets, as we did with C(g)\G), so by
Lemma 5.34 we have that |G/Z| ≤ 2. This implies that Z must be non-
compact (otherwise G would be compact), but then by Lemma 5.35 we have
that G = Z, which contradicts our assumption that G was not Abelian. �

The corresponding result in [11]�namely, Proposition 3.5.2�is the state-
ment that any in�nite ω-stable group has an in�nite de�nable Abelian sub-
group. The proof as stated does not generalize to continuous ω-stable groups,
as we now have many di�erent Morley ranks rather than a single one.

Question 5.37. To what extent does [11, Prop. 3.5.2] generalize to arbitrary
ω-stable groups in continuous logic? Is it true that every non-compact ω-
stable group has a de�nable non-compact Abelian subgroup? Does it follow if
we assume that models of the theory are locally compact?

It is known that type-de�nable subgroups in ω-stable theories are de�n-
able [3], so it is not preposterous to hope that there may be nice de�nable
subgroups in arbitrary ω-stable continuous groups.

We would like to take a moment to negatively answer a question given
in the introduction of [3], which to our knowledge does not have an an-
swer at least in the published literature. In [3], Ben Yaacov asked whether
or not type-de�nable groups in stable theories are always intersections of
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some family of de�nable groups. It turns out that, unlike in discrete logic,
superstability is not enough to ensure that type-de�nable groups are the in-
tersections of families of de�nable groups in continuous logic. It is not hard
to show that the structure (Q,+, cos, sin)15 with the discrete metric has a
weakly minimal and therefore superstable theory but also has the property
that the type-de�nable group given by {cos(x) = 1, sin(x) = 0} is not, in
su�ciently saturated elementary extensions, the intersection of any family
of de�nable subgroups. In fact, the only de�nable subgroups in this theory
are the trivial subgroup and the group itself. This is in line with the general
phenomenon, discussed in Section 4, that, while ω-stable theories are well
behaved with regards to de�nable sets, even superstable theories are not.

For a full characterization of inherently non-discrete strongly minimal
groups, we will need the following signi�cant fact from the theory of topo-
logical groups.

Fact 5.38 ([23, Thm. 25]). Every locally compact Hausdor� Abelian group
has an open subgroup topologically isomorphic to Rn ×K for some compact
group K and some non-negative integer n.

We will also need the following well known algebraic fact regarding Abelian
groups.

Fact 5.39. An Abelian group G is divisible if and only if it is an injective
object in the category of Abelian groups, i.e. if and only if for any group H
with subgroup F ⊆ H and any homomorphism f : F → G, there exists a
homomorphism g : H → G extending f .

Facts 5.38 and 5.39 imply that every locally compact Hausdor� Abelian
group can be written in the form Rn×G, with n a non-negative integer and
G a totally disconnected locally compact Hausdor� group. (To see this, note
that any homomorphism extending the inclusion map of Rn into Rn ×K to
the entire group must be continuous, and G can be taken to be the kernel of
this extension.)

Lemma 5.40. If G is a group structure with a bi-invariant metric and H
is a de�nable subgroup of G, then the imaginary sort given by quotienting by
the de�nable pseudo-metric ρ(x, y) = infz∈H d(x, yz) corresponds to the set
G/H of left cosets of H. (And a similar metric gives the set of right cosets
of H.)

If H is a normal subgroup, then the natural group structure on G/H is
de�nable on G/ρ.

Proof. The fact that ρ is a pseudo-metric follows from the bi-invariance of
the metric (really we only need right invariance). The easiest way to see this
is that ρ(x, y) is equal to dH(xH, yH), where dH is the Hausdor� metric on
sets.

15One should think of this as (Q,+) with a non-trivial homomorphism to the circle
group S1.
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We clearly have that if a and b are conjugate by an element of H, then
ρ(a, b) = 0. Conversely, assume that ρ(a, b) = 0. This implies that for
any ε > 0 we can �nd a c such that d(a, bc) < ε. By bi-invariance, this is
equivalent to d(e, a−1bc) < ε. So we have that for every ε > 0, d(a−1b,H) <
ε, which implies that a−1b ∈ H, since H is de�nable and therefore closed.

Now we just need to show that if H is a normal subgroup, then the group
structure on G/H is de�nable on G/ρ. Let q : G → G/ρ be the quotient
map. For any a, b, c ∈ G, we have that ρ(q(a)q(b), q(c)) is equal to ρ(ab, c),
since H is a normal subgroup. This is therefore a ρ-invariant formula and
corresponds to a formula on the imaginary sort. �

Theorem 5.41. A completely metrizable topological group G can be given a
metric under which it is a strongly minimal group if and only if it is non-
compact and

• there is a prime p such that every element of G has order p or
• G is divisible and can be written as Qκ ⊕ Rn ⊕ H, where H has a
compact subgroup K such that H/K =

⊕
p(Z/p∞Z)αp , with n and

each αp �nite and κ arbitrary, where Z/p∞Z is the p-Prüfer group.16

Furthermore, the resulting theory is inherently non-discrete if and only G is
of the second form with n > 0.

Proof. (⇒). Suppose that G is a strongly minimal group structure. By
Proposition 5.36, G is Abelian.

For any prime p, let pG denote the metric closure of {px : x ∈ G}, which
is a subgroup. It is de�nable by d(x, pG) = infy d(x, py). Suppose that for

some p, pG is a proper subgroup of G. By Lemma 5.35, this implies that
pG is compact. Consider the type-de�nable subgroup {x ∈ G : px = e}. If
this is compact, then we have that G is homeomorphic to a product of two
compact sets, which is a contradiction, therefore {x ∈ G : px = e} must be
all of G, by Lemma 5.35, and so G falls under the �rst bullet point.

Now assume that for every p, pG is all of G. Let G′ be an ω-saturated
elementary extension of G. We now have that G′ is a divisible group. By
Fact 5.38, G′ can be written as Rn ⊕H, where H has a compact subgroup
K such that H/K is a discrete Abelian group. n must be �nite by local
compactness. By replacing K with G ∩ K, we may assume that K is a
subgroup of G. Since G′ is divisible, we must have that H is divisible as well.
By the characterization of divisible Abelian groups, H/K can be written as
Qκ⊕

⊕
p(Z/p∞Z)αp . By Fact 5.39, we have that H can be written as Qk⊕L,

where K is a subgroup of L and L/K is isomorphic to
⊕

p(Z/p∞Z)αp . For

each prime p, the type-de�nable subgroup {x ∈ G′ : px = e} cannot be all of
G′ and so by Lemma 5.35 is compact. This implies that αp must be �nite.
Since we can do this for every prime p, we have that G′ falls under the case
in the second bullet point.

16The p-Prüfer group is isomorphic to the group of pnth roots of unity under
multiplication.
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G is an open subgroup of G′. This implies that Rn ⊕ {e} ⊆ G′ is also a
subgroup of G. This implies that we can write G as Rn ⊕ L with K ⊆ L
and L/K a discrete group. Each subgroup {x ∈ G : px = e} is algebraic, so
we must have that {x ∈ G : px = e} = {x ∈ G′ : px = e}. Thinking of L/K
as a subgroup of H/K, this implies that each factor of the form Z/p∞Z is
contained in L/K. Therefore L/K must be of the form Qλ⊕

⊕
p(Z/p∞Z)αp

for some λ ≤ κ, and G falls under the case in the second bullet point.
(⇐). Let G be a completely metrizable group such that every element of

G has order p. Let K be a compact open subgroup of G such that G/K is
discrete. By standard group theory, G and K are, algebraically speaking,
vector spaces over Fp. Let dK be an arbitrary bi-invariant metric on K
inducing the topology with diameter at most 1

2 . Let d be a metric on all of

G de�ned by d(a, b) = dK(ab−1, e) if ab−1 ∈ K and d(a, b) = 1 otherwise.
Because dK is bi-invariant, this is a metric. Under this metric, K is contained
in the 2

3 -ball of e and so is in the algebraic closure of ∅ and is in every model
of Th(G). If G′ is any model of Th(G) and G′′ is any elementary extension of
G′, it is not hard to show that any two elements of G′′rG′ are automorphic,
so Th(G) is strongly minimal.

Let G be a completely metrizable group falling under the case in the
second bullet point. Let K be the compact subgroup and let dK be an
arbitrary bi-invariant metric giving the topology onK with diameter at most
1
2 . Given a, b ∈ G, write them as (a0, a1) and (b0, b1), where a0, b0 ∈ Rn and

a1, b1 ∈ Qκ ⊕ H. Put a metric on G by d(a, b) = 1 if a1b
−1
1 /∈ K and

d(a, b) = max
{
‖a0−b0‖∞

1+‖a0−b0‖∞
, dK(a1b

−1
1 , e)

}
otherwise. This is a metric which

induces the topology on G. Note that
‖a0−b0‖∞

1+‖a0−b0‖∞
is a metric on Rn, so d

can be written as the maximum of a metric on Rn and a metric on Qκ ⊕H
and therefore is a metric inducing the product topology. Note that since G
is non-compact, the diameter of G with regards to d is 1.

Let G′ be an elementary extension of (G, d). The theory of (G, d) entails
that the metric on G′ is [0, 1] valued, but also entails that for any ε > 0
with ε < 1, the closed ε-ball of any element is compact (and isometric to the
corresponding closed ball around e).

Claim: For any prime p and any positive integer n, the type-de�nable set
{x : pnx = e} is de�nable and algebraic.

Proof of claim. Each of these sets is compact in G, so we only need to
show that they are de�nable. Fix ε > 0 and �nd δ > 0 small enough that
for a ∈ K if dK(pna, e) < δ, then there exists a b ∈ K with d(a, b) < ε such
that pnb = e (this always exists by compactness). We may take δ to be less
than 1

2 and less than ε.
For a ∈ G, suppose that d(pna, e) < δ. If we write a as (a0, a1) with

a0 ∈ Rn and a1 ∈ Qκ ⊕H, then this implies that
‖pna0‖∞

1+‖pna0‖∞
< pnε and also

that pna1 ∈ K with d(pna1, e) < δ. By our choice of δ, this implies that
there is some b1 ∈ K such that d(a1, b1) < ε and pnb1 = 0. This implies that
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d((a0, a1), (0, b1)) < max{ε, δ} < ε. Therefore, we have that the relevant set
is de�nable. �claim

The claim implies that any a ∈ G′rG is divisible and torsion free. By the
classi�cation of divisible Abelian groups and the fact that G′/K is locally
homeomorphic toG/K, we have thatG′ is topologically isomorphic toG⊕Qλ

for some cardinal λ. Furthermore, we have that for any a, b ∈ G′, if d(a, b) <
1, then b − a is in G. This implies that G′ can be realized as G ⊕ Qλ with
the discrete metric on Qλ and the max metric on the product. From this
we get that any two elements of G′ r G are automorphic, and the same
argument will work for any elementary extension G′′ of G′, so we have that
T is strongly minimal.

The `furthermore' statement follows directly from Theorem 5.22. �

It is possible that G in the statement of Theorem 5.41 is not of the form
K × G/K. An example of this is the additive group of the p-adic numbers
with the appropriate metric, as discussed after Example 5.20. K will be the
subgroup of p-adic integers or some scaling of them, and the p-adic numbers
do not decompose as a direct sum with any of these groups as a factor.

It is also possible to give a bi-invariant metric to a group of one of the
forms given in Theorem 5.41 which will make it fail to be strongly minimal.
This is very easy when the group is discrete�Q with the metric d(x, y) which
is 1 when x − y ∈ Z r {0} and 2 when x − y /∈ Z�but it is also possible
when the group is of a form that would result in an inherently non-discrete
theory�R with the metric d(x, y) = min{|x − y|, 1} + d(x, y + Z), which is
a metric as it is the sum of a metric and a pseudo-metric.

Characterizing the metrics which make the groups identi�ed in Theo-
rem 5.41 strongly minimal seems di�cult. We were unable to answer what
ought to be the easiest question related to this issue.

Question 5.42. If (G, d,+) is a group structure such that (G, d,+) is topo-
logically one of the groups speci�ed in Theorem 5.41, d is a bi-invariant
metric, and (G, d) is a strongly minimal metric space, does it follow that
(G, d,+) is strongly minimal?

Another direction for future study would be to replicate the very tight
characterization of transitive faithful ω-stable group actions on strongly min-
imal sets:

Fact 5.43 ([11, Thm. 3.5.2]). If (G,X) is a (discrete) ω-stable transitive
faithful group action with X strongly minimal, then MR(G) ≤ 3 and

(1) if MR(G) = 1, then G has a de�nable �nite index subgroup H which
acts regularly on X and

(2) if MR(G) ≥ 2, then there is a �eld K de�nable on X or X \ {a} for
some point a.

Recall that a group action is transitive if the orbit of every element is the
entire set, it is faithful if Stab(X) is trivial, and it is regular if for any a ∈ X,
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the function g 7→ ga is a bijection. Note that in the �rst case, H is strongly
minimal.

A completely reckless conjecture would be that only the �rst case of
Fact 5.43 can occur in an inherently non-discrete theory (this would be re-
lated to a negative answer to Question 5.27).

Question 5.44. Is it possible to have a locally compact metric group G with
bi-invariant metric acting faithfully and transitively on a metric space X
such that Th(G,X) is inherently non-discrete, ω-stable, and has X strongly
minimal without G having a de�nable strongly minimal group with compact
index that acts regularly on X?

Local compactness also adds a new parameter to these questions regarding
these kinds of characterizations.

Question 5.45. If G is a (not necessarily locally compact) metric group with
bi-invariant metric acting faithfully and transitively on a metric space X
such that Th(G,X) is ω-stable and has X strongly minimal, is G necessarily
locally compact?

5.2. A Partial Baldwin-Lachlan Characterization.

5.2.1. Main Theorem. Assuming T is a theory with strongly minimal sets,
part of the Baldwin-Lachlan characterization goes through exactly. This
statement is analogous to the discrete statement `For a countable theory T ,
if T has a prime model and a minimal set de�nable over it, then for any
κ ≥ ℵ1, T is κ-categorical if and only if T has no Vaughtian pairs.' Our
continuous generalization of this statement is made more complicated by a
few factors. We strengthen the result by using the weakening of strongly
minimal set given in De�nition 5.12. We also need one of two strengthenings
of no Vaughtian pairs, either of which is su�cient. And, given the presence
of certain counterexamples in continuous logic (such as Example 5.68), we
would like to state the result both for de�nable sets in the home sort and for
arbitrary imaginaries.

Theorem 5.46. Let T be a countable complete theory with non-compact
models and let κ be any uncountable cardinal.

(i) If T has a prime model and an approximately minimal set de�nable
over it, then the following are equivalent.
(a) T is κ-categorical.
(b) T is dictionaric and has no Vaughtian pairs.
(c) T has no open-in-de�nable Vaughtian pairs.

(ii) If T has a prime model and an approximately minimal imaginary
de�nable over it, then the following are equivalent.
(a) T is κ-categorical.
(b) T is dictionaric and T eq has no Vaughtian pairs.
(c) T eq has no open Vaughtian pairs.
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Proof. Since T has an approximately minimal set de�nable over its prime
model, by Proposition 5.15 we have that there is a minimal set de�nable
over its prime model.

(i). If T is κ-categorical, then T is ω-stable and therefore dictionaric, and
also has no open-in-de�nable Vaughtian pairs, and therefore no Vaughtian
pairs.

If either (b) or (c) is true, then by Proposition 5.4, the de�nable minimal
set is strongly minimal. Let D be this strongly minimal set. Let A be
a basis in D of cardinality κ, and let A be prime over acl(A). If B is a
model of density character κ, then since T has no Vaughtian pairs, D(B)
has density character κ, and so we can �nd a basis B of D(B) of cardinality
κ. Therefore we can �nd an isomorphism D(A) ∼= D(B). Since A is prime
over D(A) we can extend this isomorphism to an embedding A � B, but
since T has no Vaughtian pairs this must be an isomorphism. Therefore all
models of density character κ are isomorphic to A.

(ii). The proof here is the same as the proof of (i) with the following notes:
If T is dictionaric, then T eq is dictionaric over models, which is enough to
show that minimal sets are strongly minimal in case (b). In case (c), if T
has no open Vaughtian pairs in imaginaries, then it has no open-in-de�nable
Vaughtian pairs in imaginaries, since de�nable subsets of imaginaries are
imaginaries. �

Note that the conclusion of Theorem 5.46 also holds if we know that
T has an approximately minimal set (or imaginary) de�nable over every
model, as then we can show that TA for some countable set of constants is
κ-categorical, and therefore ω-stable, implying that T has a prime model
with an approximately minimal set (or imaginary) de�nable over it.

Now we will explore some cases under which the assumptions of Theo-
rem 5.46 are satis�ed.

5.2.2. Theories with a Locally Compact Model. Here we give a Baldwin-
Lachlan characterization for theories with a locally compact model. We
should note that having a locally compact model is not equivalent to having
every model locally compact.

Proposition 5.47.

(i) If T is a theory with a non-compact, locally compact model M, and
S1(M) is CB-analyzable (in particular if T is ω-stable or S1(M) is
small), then pre-minimal types are dense in S1(M) r M (which is
closed).

(ii) If T is a totally transcendental theory with non-compact models such
that every model is locally compact, then strongly minimal global types
are dense among non-algebraic global types.

Proof. (i). First we need to see that S1(M)rM is closed. For every a ∈M
there is an ε > 0 such that B≤2ε(a) is compact. This implies that B≤ε(a)
is algebraic over a by Lemma 2.8. Therefore in particular B<ε(a) ∩M =
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B<ε(a) ⊆ S1(M). Therefore M as a subset of S1(M) is a union of open sets
and is itself open. Since S1(M) is CB-analyzable, d-atomic-in-S1(M) r M
types are dense in S1(M) r M. Let p be any such type. Since S1(M) is
CB-analyzable, it is dictionaric, so let D ⊆ S1(M) be a de�nable set such
that D∩ (S1(M)rM) = {p}. Then D is a minimal set: If F,G ⊆ D are two
M -zerosets, at most one of them can contain p, so at most one of them can
be non-algebraic. Since this is true of any type that is relatively d-atomic in
S1(M) rM, we have that pre-minimal types are dense in S1(M) rM.

(ii). This is immediate from the fact that pre-minimal types over ℵ0-
saturated structures are strongly minimal. �

Corollary 5.48. If T is a theory with a locally compact model, then T is
inseparably categorical if and only if it is ω-stable and has no Vaughtian
pairs.

5.2.3. Ultrametric Theories and Theories with Totally Disconnected Type
Spaces. p-adic Banach spaces are a natural example of ultrametric struc-
tures (i.e. ultrametric metric structures). `∞ and c0 spaces over p-adic �elds
are known to behave somewhat analogously to Hilbert spaces. In particular
they have a good notion of orthonormal bases [27, Thm. 5.16] and as such
they are also inseparably categorical. This is not surprising as the unit balls
of these spaces are in a precise sense the inverse limit of the sequence of
structures (Z/pnZ)ω as n→ ω.

Example 5.49. An inseparably categorical ultrametric theory with no strongly
minimal set.

Veri�cation. Let M = c0(ω,Zp) be the unit ball of the p-adic Banach space
c0(κ,Qp), i.e. M consists of elements a of Zωp satisfying a(i) → 0 as i → ω.

The metric on M is given by d(a, b) = sup dZp(a(i), b(i)). The language
consists only of + (note that since Z is dense in Zp, we don't actually need
to have explicit scalar multiplication functions).

(∗) Clearly we have that the binary relation Jd(x, y) ≤ p−1K is an equiv-
alence relation. The imaginary obtained by quotienting by this equivalence
relation is clearly the in�nite dimensional vector �eld over the �nite �eld Fp.
Furthermore models of Th(M) are prime over this imaginary. To see this
assume that A ≺ B is a proper elementary pair of models of this theory.
Let b ∈ B r A. Let a be an element of A such that d(b, a) = d(b,A) (this
always exists because the set of possible distances is reverse well-ordered).
Then we have that d(b− a, 0) = d(b, a) and b− a /∈ A. If this is 1, then we
are done, since b is necessarily in its own equivalence class in the imaginary
that is not contained in A, otherwise d(b − a, 0) = p−n for some n > 0.
The theory knows that if d(c, 0) = p−n, then there is a unique element e
satisfying pne = c. Let pnc = b − a. We have that c must be an element of
B satisfying d(c,A) = 1. Therefore the imaginary must be bigger in B than
it is in A.
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So since models of Th(M) are prime over a strongly minimal imaginary
we have that Th(M) is inseparably categorical.

To see that Th(M) has no strongly minimal sets, note that it is enough
to show that S1(M) has no pre-minimal types, since M is approximately
ℵ0-saturated. If p ∈ S1(M) is some non-algebraic type, then the argument
in paragraph (∗) gives an M-de�nable bijection between the smallest ball
centered on some element of M that contains p and the entire structure.
Since the unique non-algebraic type q satisfying d(q,M) = 1 is not pre-
minimal, this implies that p is not pre-minimal. Since we could do this for
any non-algebraic p, this implies that no type is pre-minimal, and so no type
is strongly minimal. �

The relationship between ultrametric theories and theories with totally
disconnected type spaces is summarized in the following theorem.

Theorem 5.50. Let T be a countable theory, the following are equivalent:

(i) For every n < ω and every parameter set A, Sn(A) is totally discon-
nected (where we take a single point to be totally disconnected).

(ii) For every �nite parameter set a, S1(a) is totally disconnected.
(iii) For every n < ω, Sn(∅) is totally disconnected.
(iv) The diagonal in S2(∅) (i.e. Jd(x, y) = 0K) has a basis of clopen neigh-

borhoods.
(v) T is dictionaric and there is a de�nable metric ρ, uniformly equiva-

lent to d, such that the distance set, ρ(T ) = {ρ(a, b)|a, b ∈M |= T},
contains no neighborhood of 0.

(vi) T is dictionaric and there is a de�nable ultrametric ρ, uniformly
equivalent to d, such that ρ(T ) ⊆ {0} ∪ {2−i|i < ω}.

Proof. (i)⇒ (iii). This is immediate.
(iii)⇒ (i). Assume that some Sn(A) has a nondegenerate continuum C.

Let p, q ∈ C be distinct types. By compactness there must exist a restricted
formula ϕ(x; a) and a �nite parameter set a ∈ A such that p(x) |= ϕ(x; a) = 0
and q(x) |= ϕ(x; a) = 1. This implies that p � a and q � a are still distinct
types, so since the natural projection π : Sn(A) → Sn(a) is continuous,
π(C) must be a nondegenerate continuum, thus Sn(a) ⊆ Sn+|a|(∅) fails to
be totally disconnected.

(iii) ⇒ (ii). Each S1(a) is a subspace of S1+|a|(∅), so this is immediate
as well.

(ii)⇒ (iii). If S1(∅) is not totally disconnected, then we are done.
Let n be the �rst n < ω such that Sn(∅) is totally disconnected but

Sn+1(∅) is not totally disconnected. Consider the projection π : Sn+1(∅)→
Sn(∅). Since Sn(∅) is totally disconnected, any continuum in Sn+1(∅) must
be contained in a single �ber. This �ber is isomorphic to S1(a) for some
parameter set a, so S1(a) is not totally disconnected.

(iii)⇒ (iv). This is immediate.
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(iv)⇒ (vi). Let {ϕi}i<ω be an enumeration of {0, 1}-valued restricted for-
mulas of two variables corresponding to indicator functions of clopen neigh-
borhoods of the diagonal in S2(∅) (note that there are only countably many
of them since every {0, 1}-valued formula is equal to some {0, 1}-valued re-
stricted formula). De�ne ρ by

ρ(x, y) = sup
i<ω

2−isup
z
|ϕi(x, z)− ϕi(y, z)|.

This is a formula and so is continuous on S2(∅). It is an ultra-psuedo-metric
since it is the supremum of a family of ultra-pseudo-metrics. It also clearly
only takes on values in the set {0} ∪ {2−i|i < ω}.

Since it vanishes on the diagonal, it must be uniformly dominated by d.
Let p be a 2-type not on the diagonal. There is some clopen neighborhood
Q of the diagonal which does not contain p. Let ϕi be its indicator function.
We then have ρp ≥ 2−i, so ρ does not vanish anywhere besides the diagonal,
so by compactness it must be uniformly equivalent to d.

(vi)⇒ (v). This is immediate.
(v) ⇒ (iii). For any p ∈ U ⊆ Sn(∅), let D be a de�nable set such that

p ∈ D ⊆ U . Note that a set de�nable relative to d is de�nable relative to
any metric uniformly equivalent to d. By compactness there is an ε > 0
small enough that Dρ≤ε ⊆ U . Since there are arbitrarily small gaps in the
distance set we can �nd 0 < δ < ε such that δ /∈ ρ(T ) and we have that
Dρ≤ε = Dρ<ε is a clopen set. Therefore Sn(∅) has a basis of clopen sets and
is totally disconnected. �

Lemma 5.51. If X is a metrically separable ultrametric space, then its
distance set, d(X) = {d(x, y)|x, y ∈ X}, is countable.

Proof. Let {xi}i<ω be a countable dense subset of X. There are only count-
ably many distances d(xi, xj). By the ultrametric inequality if we choose xi
close enough to y and xj close enough to z, d(y, z) = d(xi, xj). �

Lemma 5.52. If T is an ultrametric theory, then the underlying metric of
each Sn(A) is an ultrametric. (Recall that the metric on n-tuples is de�ned
as the maximum of the componentwise distances.)

Proof. Let p, q, r ∈ Sn(A). We can �nd a model M containing n-tuples
a |= p, b |= q, and c |= r such that d(a, b) = d(p, q) and d(b, c) = d(q, r).
Then d(p, r) ≤ d(a, c) ≤ max

{
d(a, b), d(b, c)

}
= max {d(p, q), d(q, r)}. �

Note that Lemma 5.52 isn't entirely trivial in the sense that not all metric
properties of models of theories transfer directly to the type spaces of that
theory.

Corollary 5.53. If T is an ultrametric theory whose distance set,

d(T ) := {d(a, b)|a, b ∈M |= T},
is somewhere dense, then its type space S2(T ) is not small (and in particular
T is not ω-stable).
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Proof. Assume that d(T ) is dense in some interval (r, s). Assume without
loss that 0 < r. Since d(T ) is dense in (r, s), for every t ∈ (r, s) and every
ε > 0 we can �nd a, b ∈M for some model such that |t− d(a, b)| < ε, so by
compactness there exists c, e ∈ N such that d(c, e) = t. This means that the
set J|d(x, y)− t| = 0K is non-empty in S2(∅) for every t ∈ (r, s). Let p and q
be 2-types such that dp = u > v = dq. Let ab |= p and ce |= q in some model.
If d(ab, ce) < v, then we have that d(a, b) ≤ max{d(a, c), d(c, e), d(e, b)} ≤ v,
which is a contradiction, so we have d(ab, ce) ≥ v.

Since r > 0, if we pick a type pt ∈ J|d(x, y) − t| = 0K for each t ∈ (r, s),
the set {pr|t ∈ (r, s)} will be uncountable and (>r)-separated, so S2(T ) is
not small. �

It is possible for an ultrametric theory T with somewhere dense distance
set to have S1(T ) be a single point (even if we require that T be superstable).

Corollary 5.54. Every totally transcendental ultrametric theory T has to-
tally disconnected type spaces.

Proof. Every countable reduct T0 of T is ω-stable, so by Corollary 5.53,
d(T0) is nowhere dense in [0, 1], so Theorem 5.50 applies and T0 has totally
disconnected type spaces. Since this is true for every countable reduct, {0, 1}-
valued formulas are logically complete in the full theory, and T has totally
disconnected type spaces as well. �

As a word of warning, not all ultrametric theories have totally discon-
nected or even dictionaric type spaces.

Corollary 5.55. Every theory T with totally disconnected type spaces is
bi-interpretable with a many-sorted discrete theory Tdis.

Proof. Since T has totally disconnected type spaces, it is dictionaric. By
Theorem 5.50, we can �nd an ultrametric ρ uniformly equivalent to d such
that ρ(T ) ⊆ {0}∪ {2−i|i < ω}. This means that we can de�ne a sequence of
{0, 1}-valued equivalence relations Ek(x, y) = 2k+1 min

{
2−k ·− ρ(x, y), 1

}
.

Each imaginary Tk = T/Ek is metrically discrete and dictionaric by corol-
lary 4.12, so for every parameter set A, Sn((T/Ek)A) is totally disconnected
and metrically discrete (the distance set of a type space is always a subset of
the distance set of the theory). If we form a many-sorted theory

⊔
k<ω T/Ek

with all the de�nable relations between di�erent imaginaries, all of the type
spaces will still be totally disconnected and metrically discrete, because for
any �nite set T/Ek0 , ..., T/Ekn−1 , the largest ki theory has surjectively de-
�ned maps to the others, so the mixed-sort type spaces are discrete quotients
of some Sn(T/Ek) and are thus totally disconnected and metrically discrete.

To see that this is a bi-interpretation note that the discrete theory has an
ω-ary imaginary consisting of the direct limit lim

→
T/Ek; speci�cally we can
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consider the imaginary sort
∏
k<ω T/Ek, and then note that the set

D =

{
α ∈

∏
k<ω

T/Ek : (∀k < ω)α(k)Ekα(k + 1)

}
is de�nable. To see that D is de�nable, note that for each k < ω, the set

Dk =

{
α ∈

∏
k<ω

T/E` : (∀` < k)α(`)E`α(`+ 1)

}
is clopen and satis�es D ⊆ Dk ⊆ D<2−k . D is identical to the home sort of
the original theory. �

Now that we know that ω-stable ultrametric theories are discrete theories
in disguise, a Baldwin-Lachlan characterization is immediate.

Corollary 5.56. If T is an ultrametric theory or has totally disconnected
type spaces, then T is inseparably categorical if and only if it is ω-stable and
has no imaginary Vaughtian pairs.

5.2.4. When Can We Find Strongly Minimal Imaginaries over the Prime
Model? We will establish in Section 5.4.1 that there are inseparably cate-
gorical theories with strongly minimal sets only over models of su�ciently
high dimension. Such theories fail the assumptions of the �rst part of The-
orem 5.46, but what is unclear at the moment is the possibility of an insep-
arably categorical theory that has a strongly minimal imaginary over some
models but not others. In this section we will present some partial progress
on this question, and show that this cannot happen if the strongly minimal
set is discrete.

Proposition 5.57. If T is a dictionaric theory with no imaginary Vaughtian
pairs such that for some model M there is an in�nite discrete M-de�nable
imaginary, then for every model N there is an in�nite discrete N-de�nable
imaginary.

Proof. Assume that T is countable. By Lemma 2.17 we may assume that
the in�nite discrete imaginary over M is a de�nable subset D(x, a) of some
∅-de�nable imaginary I. Assume without loss of generality that the metric
on D(−, a) is {0, 1}-valued.

Since D(x, a) is a distance predicate, part of tp(a) says that

χ0(a) = sup
x

inf
y

max {D(y, a), |D(x, a)− d(x, y)|}

and

χ1(a) = sup
x

∣∣∣∣D(x, a)− inf
y

min {D(y, a) + d(x, y), 1}
∣∣∣∣

both vanish. (These are the axioms for distance predicates given in [5] right
before Theorem 9.12.) tp(ā) also says that

η(a) = sup
x,y

min {d(x, y), 1 ·− d(x, y)} ·− 4(D(x, a) +D(y, a))
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vanishes. (This is just supx,y∈D(−,a) min {d(x, y), 1 ·− d(x, y)} expanded out.)

Fix N another model of M and let {bi}i<ω be a sequence of elements of
N such that tp(bi) → tp(a) (we can choose it to be a sequence rather than
a net since T is countable), such that in particular χ0(bi), χ1(bi), η(bi) < 2−i

for every i < ω. For each i < ω let Ei be a bi-de�nable set such that
JD(−, bi) < 2−i+1K ⊇ Ei ⊇ intEi ⊇ JD(−, bi) ≤ 2−iK.

For each i < ω, we have that

A |= sup
x,y∈Ei

min {d(x, y), 1 ·− d(x, y)} ·− 8 · 2−i+1 = 0.

So in particular for su�ciently large i < ω, for any x, y ∈ Ei, either d(x, y) <
1
4 or d(x, y) > 3

4 , implying that we can de�ne a {0, 1}-valued equivalence

relation on Ei by ρ(x, y) = min
{

2(d(x, y) ·− 1
4), 1

}
for su�ciently large i < ω.

Now assume that for all i < ω for which ρ de�nes an equivalence relation
on Ei, there are �nitely many ρ-equivalence classes in Ei. Let A � N be
a proper elementary extension. Fix a non-principal ultra�lter U on ω and
consider the ultraproduct (B,N′, c) =

∏
i<ω(A,N, bi)/U , where (A,N, bi) is

a structure whose universe is A with a distance predicate for N and constants
for bi. Note that B is a proper elementary extension of N′, because A is
uniformly a proper elementary extension of N in the product. Clearly we
have that tp(c) = tp(a), so D(−, c) is a de�nable set which is in�nite and
has a {0, 1}-valued metric.

We want to argue that B � N′ is a Vaughtian pair with regards to the set
D(−, c). Let α(i) be a sequence such that α(i) ∈ (A,N, bi) and such that the
limit α/U is in D(−, c). This means that we must have limU D(α(i), bi) = 0.
Pick ε > 0. For each α(i) we have that there is a β(i) such that D(β(i), bi) <
2−i and |D(x, bi)− d(α(i), β(i))| < 2−i, so in particular β(i) ∈ Ei(A). Since
Ei only has �nitely many ρ-classes, there must be a γ(i) ∈ Ei(N) such that
d(β(i), γ(i)) < 1

4 , implying that d(α(i), γ(i)) < 1
4 + 2−i+1 and in particular

d(α(i),N) < 1
4 + 2−i+1. So then in the limit we have d(α/U ,N′) ≤ 1

4 , but
since D(−, c) has a {0, 1}-valued metric this implies that α/U ∈ D(N′, c), so
(B,N′) is a Vaughtian pair.

Since T has no imaginary Vaughtian pairs, this is a contradiction and some
Ei must have in�nitely many ρ-classes, so then Ei/ρ is an in�nite discrete
imaginary over N. �

Corollary 5.58. If T is an inseparably categorical theory with a discrete
strongly minimal imaginary over some set, then it has a discrete strongly
minimal imaginary over the prime model.

Proof. By the previous proposition there is an in�nite discrete imaginary
over the prime model, maybe not strongly minimal, but by ω-stability we
can �nd a minimal set in it which must by no imaginary Vaughtian pairs be
strongly minimal. �
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5.3. The Number of Separable Models. Regarding the question of the
number of separable models, we immediately get the following, generalizing
a result originally due to Morley in discrete logic [22].

Proposition 5.59. If T is an inseparably categorical theory with a minimal
set or imaginary de�nable over the prime model, then T has at most countably
many separable models.

Proof. By Lemma 2.17 we may assume that D is a strongly minimal set
(rather than a strongly minimal imaginary) by appending a ∅-de�nable
imaginary sort. Let D(x; a) be a minimal set de�nable over the prime model.
Since T is dictionaric and has no Vaughtian pairs, this is a strongly minimal
set. Let A be any separable model of T . The prime model M embeds into
A so we can �nd b ∈ A with b ≡ a and we get that D(x; b) is a strongly
minimal set. It must be the case that dim(D(A; b)) ≤ ω, since A is separable.
Assume that we chose b so that dim(D(A; b)) ≤ ω among parameters with
the same type as b. If B is any other separable model we may �nd c ∈ B
with c ≡ a and dim(D(B; c)) minimal. If dim(D(A; b)) = dim(D(B; c)),
then we get an elementary map f : D(A; b)∪ b→ D(B; c)∪ c, which extends
to an isomorphism between A and B, since T has no (imaginary) Vaughtian
pairs. Therefore since there are only countably many possible dimensions for
separable models, we get that there are at most countably many separable
models. �

Lemma 5.60. If T is an inseparably categorical theory and (D,P ) is a ∅-
de�nable approximately minimal pair, then every model M of T is prime
over JP (M) = 0K.

Proof. Assume that some model A is not prime over JP (A) = 0K. Let B ≺ A
be prime over JP (A) = 0K, so in particular JP (A) = 0K = JP (B) = 0K. Let
M be the prime model of T and �nd some embedding M � B. Since D is
∅-de�nable, we can �nd a strongly minimal E ⊆M de�nable over M. Note
that every element of E(C) r JP (C) = 0K, where C is the monster model, is
algebraic over M. This implies that E(B) = E(A) as well, but then this is
a Vaughtian pair, which is a contradiction. Therefore every model M of T
is prime over M. �

The di�culty in characterizing the number of separable models of an in-
separably categorical theory seems to be related to the phenomenon of non-
d-�nite types, identi�ed by Ben Yaacov and Usvyatsov in [7]. Finitary types
in continuous logic can behave analogously to ω-types in discrete logic. Ben
Yaacov and Usvyatsov identi�ed a class of types they call d-�nite which be-
have like discrete �nitary types. In their paper they were able to prove that
a superstable theory with `enough uniformly d-�nite types' (where uniformly
d-�nite is a technical strengthening of d-�nite) has either 1 or in�nitely many
separable models, whereas in general an ω-stable continuous theory can have
any �nite number of separable models, including 2 (they also showed that
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in the presence of `enough d-�nite types,' a continuous theory cannot have
exactly 2 separable models).

So in some easy cases we get the full Baldwin-Lachlan theorem on the
number of separable models of an inseparably categorical theory:

Theorem 5.61. If T is an inseparably categorical theory and any of the
following occur, then T has either 1 or ω separable models.

• T has a ∅-de�nable approximately minimal pair (possibly in an imag-
inary).
• T is ultrametric or has totally disconnected type spaces.
• T has enough uniformly d-�nite types.

Proof. The only di�cult case is the �rst one, but this is covered by Lemma
5.60. The second case follows from the fact that such theories are inter-
de�nable with many-sorted discrete theories, and the third case is a direct
corollary of Theorem 4.7 in [7]. �

The following example shows that we cannot hope to show that every
model of an inseparably categorical theory is exactly homogeneous, although
at the moment they seem to always be approximately homogeneous.

Example 5.62. A totally categorical theory T with a strongly minimal set
such that for any strongly minimal set D(x, a) in the home sort of the unique
separable model M, for any n ≤ ω, there is a b ≡ a such that dim(D(M, b)) =
n.

Veri�cation. The construction of this example is very similar to the construc-
tion of Tω in Theorem 5.66, so we will only sketch the di�erences. Make the
following two changes to the construction:

• De�ne the score of an element α ∈W by

s(α) = min
{
g(A) : A ∈ G,

∑
α(A) = 0

}
.

• Remove the predicates Cv from the language.

A similar analysis gives that the theory of this structure has a ∅-de�nable
strongly minimal imaginary I whose dimension in the prime model is in�nite.
Furthermore types over the prime model M in the home sort are strongly
minimal if and only if they correspond to elements α where α(0), α(2), α(4), . . .
enumerates a linearly independent set and only one α(2i+ 1) is not realized
in I(M).

If, for example, α(0) is not realized in I(M), then the we can choose
β(2)β(4) · · · ≡ α(2)α(4) . . . such that the subspace of I(M) spanned by
β(2)β(4) . . . has arbitrary codimension ≤ ω, giving the required property
for the theory of this structure. �

The problem in Example 5.62 is that the strongly minimal set requires
non-d-�nite parameters. We can get some traction by assuming that we
have a strongly minimal set de�nable over a d-�nite tuple of parameters, but
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adapting the proof of the Baldwin-Lachlan theorem any further than this is
unclear at the moment.

Proposition 5.63. Suppose that p(x, a) is a strongly minimal type, tp(a)
is d-�nite, and T is a dictionaric theory. If M is a model containing a and
there is n < ω such that for every ε > 0, there is b ∈M with d(a, b) < ε and
dim(p(M, b)) ≥ n, then dim(p(M, a)) ≥ n.

Proof. Let q(y, a) be the type of an n-element independent sequence in
p(x, a). Find ε > 0 small enough that B≤2ε(c) ∩ p(C, a) ⊆ acl(ca) for every
c |= p(x, a). (Note that this works because we can de�ne an approximately
strongly minimal pair over a pointing at p(x, a); then, by examining the de�-
nition of approximately strongly minimal pair we get that for any c |= p(x, a)
there is some ε > 0 such that the inclusion B≤2ε(c) ∩ p(C, a) ⊆ acl(ca)
holds, but then by automorphisms of C this works for every c |= p(x, a).)
Fix an approximately strongly minimal pair (D(x, a), P (x, a)) pointing at
p(x, a) and �nd a γ > 0 small enough that if a ≡ b and d(a, b) < γ, then
dH(D(C, a), D(C, b)) < ε.

By d-�niteness (of tp(b)), we can �nd a δ > 0 such that for any b with
d(a, b) < δ and any c |= q(y, b), we can �nd e such that ae ≡ bc and
d(e, c) < ε.

Let b ∈ M be such that a ≡ b and d(a, b) < min {δ, γ}. By construction
we have that dH(D(M, a), D(M, b)) < ε. Let c be an independent tuple of
length n of realizations of p(x, b). Let e0 be a tuple of elements of D(M, a)
such that d(c, e0) < ε. By construction we also have that there is a tuple
e (in the monster model) such that ae ≡ bc and d(e, c) < ε. For each
i < n, we have that d(e0

i , ei) ≤ d(e0
i , ci) + d(ci, ei) < ε + ε. Therefore

ei ∈ B≤2ε(e
0
i ) ∩ p(C, a) for each i, but this implies by construction that

ei ∈ acl(e0
i a), so in particular ei ∈ M. Therefore e ∈ M and we have that

dim(p(M, a)) ≥ n. �

Corollary 5.64. If tp(a) is d-�nite, p(x, a) is strongly minimal, and T
is dictionaric, then in any approximately homogeneous model M, for any
a, b ∈M with a ≡ b, we have that dim(p(M, a)) = dim(p(M, b)).

For the following, recall that in continuous logic there is an ω-stable theory
with precisely 2 separable models. Also note that we do not know whether
or not inseparably categorical theories have enough d-�nite types (in the
technical sense of [7]).

Corollary 5.65. If T is an inseparably categorical theory with a strongly
minimal type de�nable over a d-�nite tuple in the prime model, then T does
not have precisely 2 separable models.

Proof. Assume that T is not ℵ0-categorical. The prime model and the ap-
proximately ℵ0-saturated model are both approximately ℵ0-homogeneous
by Proposition 2.13 and Fact 1.5 in [7], respectively, so if D(x; a) is a
strongly minimal set with tp(a) atomic and d-�nite, then for any b ≡ a,
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dim(D(M; a)) = dim(D(M; b)) where M is either prime or approximately
ℵ0-saturated. We know that the approximately ℵ0-saturated model must
have dim(D(M; a)) = ω, so we must have that dim(D(N; a)) = n < ω where
N is the prime model (otherwise T would be ℵ0-categorical).

All we need to do is argue that there is a model A � N which is neither
prime nor approximately ℵ0-saturated. Let b realize the non-algebraic type
over N in D(x; a) and let A be atomic over Nb. Clearly dim(D(A; a)) > n.
We need to argue that it is n+ 1.

By Lemma 4.5 in [7] if dim(D(A; a)) > n+1, then there is some c realizing
the non-algebraic type in D(x; a) over Ab, implying that tp(c/A) forks over
Ab, but this can only happen if c ∈ acl(Ab), contradicting that c realizes the
strongly minimal type over Ab. Therefore dim(D(A; a)) = n + 1 and A is
neither prime nor approximately ℵ0-saturated and T has at least 3 separable
models. �

5.4. Counterexamples Involving Strongly Minimal Sets. Here we present
our two technical counterexamples relating to theories with strongly minimal
sets.

5.4.1. A Theory with Strongly Minimal Sets, but Only over Models of Dimen-
sion ≥ n. One might hope that if an inseparably categorical theory has a
strongly minimal set over some model, then it has one over its prime model,
but this is not true.

Theorem 5.66. For any n ≤ ω there is an inseparably categorical theory Tn
with a ∅-de�nable strongly minimal imaginary I such that

• Tn has models with dim(I(M)) = k for each k ≤ ω but
• Tn has a strongly minimal set over M in the home sort if and only
if dim(I(M)) ≥ n.

Proof. Fix n ≤ ω. Let V be the countable vector space over F2. LetW = V ω

have the standard string ultrametric (i.e. d(α, β) = 2−` where ` is the length
of the longest common initial segment of α and β). Let f : V → ω be a �xed
bijection. Let G ⊂ P({0, 2, 4, . . . , 2n}) be the set of all non-empty subsets A
of {0, 2, 4, . . . , 2n} if n < ω, and let G ⊂ Pfin({0, 2, 4, . . . }) be the set of all
non-empty �nite subsets of {0, 2, 4, . . . } if n = ω. Let g : G → ω be a �xed
injection. Let 〈−,−〉 : ω × ω → ω be a �xed pairing function.

For any α ∈W we assign a score

s(α) = min
{〈
f
(∑

α(A)
)
, g(A)

〉
: A ∈ G

}
.

Now let D ⊂ W be the set of all α such that α(2i) = 0 for all i > n and
α(2i+ 1) = 0 for all i ≤ s(α).

Claim: D is a W-de�nable set.
Proof of claim. For each k < ω let Dk ⊆Wω be the set of all α satisfying:

• For any i with i > n and 2i < k, the formula α(2i) = 0.
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• For any i < ω with 2i+ 1 < k, the formula

α(2i+ 1) 6= 0→
∨

〈v,A〉≤i

∑
(α(A)) = v.

In the language of W we can say α(j) = v for any j < ω and v ∈ V with a
{0, 1}-valued formula. Likewise note that there are only �nitely many pairs
v,A with 〈v,A〉 ≤ i, so the disjunction in the second family of formulas is
�rst-order. So we have that each Dk is de�nable by a {0, 1}-valued formula.

It is clear that Dk ⊇ Dk+1 and D(W) =
⋂
k<ωDk(W), so we may regard

D as the W-zeroset
⋂
k<ωDk. Fix ` < ω and �nd m < ω such that for any

v ∈ V with f(v) ≤ ` and any A ∈ G with maxA ≤ ` and 〈v,A〉 ≤ m. Fix
α ∈ D2m+1. Now �nd β such that β � ` = α � ` and β(i) = 0 for all i ≥ `, so
in particular d(α, β) ≤ 2−`. Now we have that β ∈ D(W), so we know that
d(α,D(W)) ≤ 2−` for all α ∈ D2m+1.

Since we can do this for arbitrarily large ` < ω we can de�ne a distance
predicate for D and D is a de�nable set. �claim

Now consider the following set of {0, 1}-valued formulas:

• For each v ∈ V , Cv(α) = 0 if and only if α(0) = v.
• P (α, β, γ) = 0 if and only if α(0) = β(0) + γ(0).
• For any even k < ω, Qk(α, β) = 0 if and only if α(0) = β(k).
• For any odd k < ω, Pk(α, β, γ) = 0 if and only if d(β, γ) ≤ 2−k and
α(0) = β(k) + γ(k).

Now let A = 〈D(W), {Cv}v∈V , P, {Q2k}k<ω, {R2k+1}k<ω〉 and Tn = Th(A).
As a reduct of Th(W), it's clear that Tn is ω-stable. Furthermore since
Th(W) is inseparably categorical we can easily construct an ℵ1-saturated
model of Tn. Let V ′ ⊃ V be the F2 vector space with dimension ℵ1, let
W′ = (V ′)ω, and let B � A be the corresponding model of Tn. It's clear
that W′ is ℵ1-saturated over W, so B is ℵ1-saturated as a model of Tn.

We can extend the de�nition of s(α) to cover α ∈ W′ if we allow for
s(α) = ∞ = min∅. Then we can check, by the de�nitions of Dk, that
D(W′) is precisely the set of α ∈ W′ such that α(2i) = 0 for all i > n and
α(2i+ 1) = 0 for all i ≤ s(α) (where i ≤ ∞ for all i < ω).

Claim: Tn is inseparably categorical with a ∅-de�nable strongly minimal
imaginary.

Proof of claim. If we let E denote the {0, 1}-valued equivalence relation
given by E(x, y) = 2(d(x, y) ·− 1

2), then it's clear than the quotient H/E of
the home sort H by E is a ∅-de�nable strongly minimal imaginary which
is equivalent to a F2 vector space with constants for elements of the prime
model. Now we just need to show that Tn has no Vaughtian pairs over H/E.
Suppose that M ≺ N are models of Tn such that H(M)/E = H(N)/E. Let
α be in N r M and assume that d(α,M) = 2−k. Find β ∈ M such that
d(α, β) = 2−k (this exists because the distance set is reverse well-ordered).

We may assume thatM andN are separated and furthermore thatN ≺ B,
so we can regard the elements ofM and N as elements of (V ′)ω. In particular
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we have that for all α ∈ N, α(2i) = 0 for all i > n and α(2i+ 1) = 0 for all
i ≤ s(α).

Now we can see that k cannot be even. If k = 2m for some m, then we can
�nd γ ∈ M such that d(α, γ) ≤ 2−k−1 by �nding the element of H(M)/E
corresponding to α(2k) and replacing β with γ satisfying γ(i) = β(i) for all
i 6= 2k and γ(2k) = α(2k).

So assume that k = 2m + 1 for some m. There is some element c of
H(N)/E such that for any σ with σ(0) = c, we haveN |= P2m+1(σ, β, α) = 0.
Therefore we can �nd such a σ in M. But now there must be some α′ with
M |= P2m+1(σ, β, α′) = 0, which implies that d(α, α′) ≤ 2−k−1, which is also
a contradiction.

Therefore there are no Vaughtian pairs over H/E and Tn is inseparably
categorical. �claim

Now it's clear that the models of Tn are uniquely determined by dim(H/E)
and that every dimension ≥ 0 is possible. So for each k ≤ ω let Vk ⊂ V ′ be a
vector space such that dim(Vk/V ) = k and letMk ≺ B be the corresponding
model of Tn. We need to characterize the types in S1(Mk). Note that every
type in S1(Mk) is realized in B, since it is ℵ1-saturated.

Fix k ≤ ω. For each τ ∈ V <ω
k , let ζτ ∈ Mk be a �xed element satisfying

ζτ ⊃ τ . For any α ∈W′, assign an `index' h(α) = 〈η(α), X(α)〉 by:

• Let η(α) ∈ V ≤ωk be the longest initial segment of α such that η(α)(i) ∈
Vk for every i < |η(α)|.
• If |η(α)| is in�nite then X(α) = ∅.
• If |η(α)| is �nite and even, then X(α) ⊆ Pfin(ω) × Vk is the set of
pairs 〈A, v〉 such that

∑
α(2A) = v.

• If |η(α)| is �nite and odd, then X(α) ⊆ Pfin(ω ∪ {−1}) × Vk is the
set of pairs 〈A, v〉 such that

∑
α(2A) = v, where we set α(−2) =

ζα�|η(α)|(|η(α)|) +α(|η(α)|). (Recall that α � m is the sequence α(0),
α(1), . . . , α(m− 1), with length m.)

With the following two claims we will show that h(α) exactly captures
tp(α/Mk).

Claim 1: For any α, β ∈ B, if h(α) 6= h(β) then α 6≡Mk
β.

Claim 2: For any α, β ∈ B, if h(α) = h(β) then for any ε > 0 there is an
automorphism σ of B, �xing Mk, such that d(σ(α), β) ≤ ε.

Proof of claim 1: If either of η(α) or η(β) is in�nitely long, then the
corresponding element is an element of Mk, so then α and β clearly have
di�erent types over Mk. So assume that both η(α) and η(β) are �nite.

If η(α) 6= η(β), then there are elements of Mk with di�erent distances to
α and β, implying that they have di�erent types over Mk. So assume that
η(α) = η(β).

If η(α) = η(β), then X(α) 6= X(β), and so this clearly gives an Mk-
formula satis�ed by α and not satis�ed by β, so we have that α 6≡Mk

β.
So we have that h(α) 6= h(β)⇒ α 6≡Mk

β, as required. �claim 1
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Proof of claim 2: Assume that h(α) = h(β). If η(α) = η(β) is in�nitely
long, then α = β ∈ Mk and there is nothing to prove, so assume that
η(α) = η(β) is �nitely long.

First we will prove that there is an automorphism σ0 of B �xing Mk such
that σ0(α)(2i) = β(2i) for every i < ω and σ0(α)(|η(α)|) = β(|η(α)|) if
|η(α)| is odd.

If |η(α)| = |η(β)| is �nite and even, then X(α) = X(β) is precisely the
statement that

α(0)α(2)α(4) · · · ≡Vk β(0)β(2)β(4) . . .

in the structure V ′. So we easily get an automorphism of V ′ taking α(0)α(2)α(4) . . .
to β(0)β(2)β(4) . . . �xing Vk. This extends to an automorphism of all of W′

�xing V ω
k which then induces an automorphism of B �xing Mk with the

required property.
If |η(α)| = |η(β)| is �nite and odd, then X(α) = X(β) is precisely the

statement that

(ζα�|η(α)|(|η(α)|) + α(|η(α)|))α(0)α(2)α(4) . . .

≡Vk (ζα�|η(α)|(|η(α)|) + β(|η(α)|))β(0)β(2)β(4) . . .

in the structure V ′. So we easily get an automorphism of V ′ taking

(ζα�|η(α)|(|η(α)|) + α(|η(α)|)), α(0), α(2), α(4), . . .

to

(ζα�|η(α)|(|η(α)|) + β(|η(α)|)), β(0), β(2), β(4), . . .

�xing Vk. This extends to an automorphism of all of W′ �xing V ω
k which

then induces an automorphism of B �xing Mk with the required property.
Now we need to argue that h(σ0(α)) = h(β). If |η(α)| = |η(β)| is even,

then there is nothing to prove. If |η(α)| = |η(β)| is odd, then the only
thing to worry about is that we might have moved ζα�|η(α)|(|η(α)|), but this
is determined by α � |η(α)| = β � |η(β)| which is unchanged and equal to
σ0(α) � |η(σ0(α))|. So we have h(σ0(α)) = h(β).

So now let γ ∈ (V ′)≤ω be the longest common initial segment of σ0(α)

and β, so that in particular d(σ0(α), β) = 2−|γ|. If γ is in�nitely long then
we are done, so assume that γ is �nitely long. It must be the case that
|γ| is odd, since we ensured that σ0(α)(2i) = β(2i) for every i. If |η(β)|
is odd, then it must be the case that |γ| > |η(β)|, since we ensured that
σ0(α)(|η(β)|) = β(|η(β)|). In any case we always have |γ| > |η(β)| ≥ 0, so
in particular we always have that the last element of γ, γ(|γ| − 1), is not in
Vk.

Now de�ne a map σ1 : B→ B by:

• σ1(χ) = χ if d(χ, β) ≥ 2−|γ|+1.

• If d(χ, β) ≤ 2−|γ|, so in particular χ(|γ| − 1) = β(|γ| − 1), then
σ1(χ)(j) = χ(j), if j 6= |γ|, and σ1(χ)(|γ|) = χ(|γ|) + β(|γ|) +
σ0(α(|γ|)).
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By checking the de�nition of D we can see that σ1 is a bijection on B. It's
also clearly an isometric map. By checking the predicates in the language
of B we can see that σ1 is an automorphism of B. Furthermore, clearly
σ1(α)(2i + 1) = β(2i + 1), so we have that d(σ1(σ0(α)), β) < d(α, β), as
required.

Now the only thing left to verify is that σ1 �xes Mk. If χ is moved by
σ1, then d(γ, α) ≤ 2−|γ|, so in particular χ(|γ| − 1) = β(|γ| − 1) /∈ Vk, so
χ /∈Mk. Therefore everything moved by σ1 is not in Mk and we have that
σ1 �xes Mk.

So by iterating the construction of σ1 we can get the required automor-
phisms bringing α arbitrarily close to β. �claim 2

So we see that α ≡Mk
β if and only if h(α) = h(β).

Now we need to determine the values of h(α) that correspond to a strongly
minimal type.

Claim: If α(2i + 1) 6= 0 for some i < ω, then tp(α/Mk) is not strongly
minimal.

Proof of claim. If α ∈Mk, then tp(α/Mk) is clearly not strongly minimal,
so assume that α /∈Mk. Since α /∈Mk, we have that η(α) has �nite length.
Since α(2i + 1) 6= 0 for some i < ω, we must have s(α) < ∞ (this is
determined by tp(α/A) so a fortiori it is determined by tp(α/Mk)). This
implies that if β has α(i) = β(i) for all i ≤ max {|η(α)|, (2s(α) + 1)} and
α(2i) = β(2i) for all i < ω, then α ≡Mk

β, implying that α/Mk has many
non-algebraic global extensions and is not strongly minimal. �claim

As a corollary of this we get that if α(0), α(2), . . . , α(2n) (where `α(0),
α(2), . . . , α(2ω)' is understood to mean the in�nite tuple α(0), α(2), . . . ) are
not linearly independent over V , then tp(α/Mk) is not strongly minimal.
Conversely we have that if α(0), α(2), . . . , α(2n) are linearly independent
over V , then α(2i + 1) = 0 necessarily for every i < ω, by the de�nition of
D.

Claim: If α(0), α(2), . . . , α(2n) are linearly independent over V and

dim({α(0), α(2), . . . , α(2n)}/Mk) > 1,

then tp(α/Mk) is not strongly minimal.
Proof of claim. If dim({α(0), α(2), . . . , α(2n)}/Mk) > 1 then tp(α/Mk)

has more than one global non-algebraic extension and so is not strongly
minimal. �claim

Clearly if dim({α(0), α(2), . . . , α(2n)}/Mk) = 0, then we have that tp(α/Mk)
is atomic and therefore not strongly minimal. So the only way for tp(α/Mk)
to be strongly minimal is if dim({α(0), α(2), . . . , α(2n)}/Mk) = 1.

As it turns out this is a precise characterization.
Claim: tp(α/Mk) is strongly minimal if and only if

dim({α(0), α(2), . . . , α(2n)}/Mk) = 1.
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Proof of claim. We have already shown the ⇒ direction, so we just need to
show the converse, but this is easy since tp(α/Mk) is clearly non-algebraic
but also has a unique non-algebraic extension over any parameter set. �claim

Now �nally we see that

dim({α(0), α(2), . . . , α(2n)}/Mk) = 1

with

dim({α(0), α(2), . . . , α(2n)}/V ) = n+ 1

is possible if and only if k ≥ n, and so Tn has the required property. �

5.4.2. A Counterexample to the Classical Characterization. One might hope
that somehow the condition that a theory be ω-stable and have no Vaughtian
pairs might be strong enough to ensure that a theory is inseparably cate-
gorical, but it is not so. The full Baldwin-Lachlan characterization fails in
continuous logic, even after strengthening the no Vaughtian pairs condition.

In order to fully state the extent of the counterexample we are going to
present in this section, we need a broad generalization of open sets and
de�nable sets.

De�nition 5.67.

(i) A set X ⊆ Sn(A) is locatable if X ⊆ intX<ε for every ε > 0. (De-
�nable, open, and open-in-de�nable sets are all locatable.)

(ii) Given a countable parameter set A, a pair of models N � M ⊇
A, where N is a proper elementary extension of M, is a locatable
Vaughtian pair if there is a locatable set X ⊆ S1(A) such that X
contains a non-algebraic type and X(M) = X(N).

The most exotic kind of locatable sets that have explicitly appeared in
this paper are open-in-de�nable sets. At the moment it is unknown whether
or not inseparably categorical theories can have locatable Vaughtian pairs,
but it seems unlikely.

Example 5.68. A countable ω-stable theory with no locatable Vaughtian
pairs that is not inseparably categorical.

Veri�cation. Let V be a countable vector space over a �nite �eld Fp. Let M
be the structure whose universe is V ω with the standard string ultrametric.
For each n,m < ω with n ≡ m (mod 2), let Pn,m be a {0, 1}-valued qua-
ternary relation such that Pn,m(a, b, c, e) = 0 if and only if d(a, b) ≤ 2−n+1,
d(c, e) ≤ 2−m+1, and a(n) − b(n) = c(m) − e(m). For any �xed n,m < ω
we have that if d(a0, a1), d(b0, b1) < 2−n−1 and d(c0, c1), d(e0, e1) < 2−m−1,
then Pn,m(a0, b0, c0, e0) = Pn,m(a1, b1, c1, e1), so each Pn,m is uniformly con-
tinuous.

We will show that T is ℵ0-categorical. To see that T = Th(M) is ω-stable
and ℵ0-categorical, note that it is a reduct of an imaginary of (V,+), which
is ω-stable and ℵ0-categorical. It is also a reduct of Example 5.49.
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To see that T is not inseparably categorical, notice that ifW is the unique
elementary extension of V of cardinality ℵ1, then (V ×W )ω, (W ×V )ω, and
(W ×W )ω are the universes of three non-isomorphic models of T .

Finally to see that T has no locatable Vaughtian pairs, we need to analyze
the structure of its type spaces more carefully. It is su�cient to prove this
statement considering locatable subsets of S1(M), where M is the unique
separable model, since any countable set of parameters can be found inside
M.

Claim: Every non-algebraic type p ∈ S1(M) is uniquely determined by the
k < ω for which d(p,M) = 2−k and α � k for any α ∈M with d(α, p) = 2−k.

Proof of claim. To see that this is true let a, b be two elements of some
N �M with d(a,M) = d(b,M) = 2−k and suppose that there are α, β ∈M
with d(a, α) = 2−k and d(b, β) = 2−k and α � k = β � k. The statement
α � k = β � k is the same as saying that d(α, β) ≤ 2−k, so since T is
ultrametric we have that d(b, α) ≤ max

{
2−k, 2−k

}
= 2−k, so d(b, α) = 2−k.

Therefore also d(a, b) ≤ 2−k. �claim
N can be written in the form (U ×W )ω for some Fp-vector spaces U,W �

V .
Assume that d(a, b) = 2−k. Either a(k), b(k) ∈ U r V or a(k), b(k) ∈

W r V (depending on whether k is even or odd), and a(k) 6= b(k), since
d(a, b) = 2−k, so we can �nd an explicit automorphism of U or W �xing
V and taking a(k) to b(k). This extends to an automorphism f of all of N
�xing M. So by replacing a with f(a), we may assume that d(a, b) < 2−k.

Assume that d(a, b) < 2−k. This implies that a(k) = b(k) /∈ V . Let
` > k be the �rst such that a(`) 6= b(`). Let g : N → N de�ned by the
following: g(c) = c if c � ` 6= a � `, otherwise g(c)(m) = c(m) for m 6= ` and
g(c)(`) = c(`) + b(`)− a(`). One can check that this is an automorphism of
N with the property that d(g(a), b) < d(a, b). Note that g �xes M.

By iterating, for any k < ω we can �nd an automorphism h of N, �xing
M. such that d(h(a), b) ≤ 2−k. Therefore a ≡M b, as required.

Let each non-algebraic type in S1(M) be denoted by an element of V <ω.
Note that each non-algebraic type is metrically isolated. To see this,

consider σ0, σ1 ∈ V <ω with σ0 6= σ1. Let τ be the longest common initial
segment of σ0 and σ1. We have that d(σ0, σ1) = 2−|τ |. In particular this

implies that other types have distance at least 2−|σ| to the type associated
to some σ ∈ V <ω.

Now also note that for any σ ∈ V <ω, the sequence of types {σ _ v}v∈V
limits to σ, because the limiting type must be in the (≤ 2−|σ|)-ball whose

center starts with σ, but it must have distance greater than 2−|σ|−1 from M,
so σ is the unique type that it can be.

Let L ⊆ S1(M) be a locatable set containing a non-algebraic type σ. The
claim is that for some v ∈ V , L must contain σ _ v as well. To see this,

note that L<2−|σ|−2
must be a neighborhood of σ, so it must contain in�nitely

many types of the form σ _ v. Let σ _ v be in L<2−|σ|−2
and let τ ∈ L
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be such that d(σ _ v, τ) < 2−|σ|−2. But since σ is (≥ 2−|σ|−1)-metrically
isolated, this implies that σ _ v = τ .

Now note that in any proper elementary extension of M = (V × V )ω, one
of the two copies of V must grow, but this implies that one of the types σ
or σ _ v must be realized in the extension, so there cannot be a Vaughtian
pair over L. �

Of course the theory of this structure has an imaginary Vaughtian pair.
As mentioned before, in discrete logic a superstable theory has no Vaugh-

tian pairs if and only if it has no imaginary Vaughtian pairs (although the
same is not true of strictly stable theories [10]). This example shows that
the same does not even hold for ω-stable theories in continuous logic.

The construction used in Theorem 5.66 and Example 5.68 clearly rely very
heavily on the ability to associate an entire copy of a strongly minimal set to
a single element of another strongly minimal set. This seems like something
that can only be done with discrete structures, which raises the following
question.

Question 5.69. Does there exist a countable ω-stable theory T with no
Vaughtian pairs that is not inseparably categorical and does not interpret
a discrete strongly minimal set? A strongly minimal set at all? In particular
is there something like Example 5.68 whose `underlying pregeometries' are
not discrete?

6. Inseparably Categorical Expansions of Banach Space

In this section we will consider expansions of Banach spaces. We introduce
the notion of an indiscernible subspace. An indiscernible subspace is a sub-
space in which types of tuples of elements only depend on their quanti�er-free
types in the reduct consisting of only the metric and the constant 0. Simi-
larly to indiscernible sequences, indiscernible subspaces are always consistent
with a Banach theory (with no stability assumption, see Theorem 6.9) but
are not always present in every model. We will show that an indiscernible
subspace always takes the form of an isometrically embedded real Hilbert
space wherein the type of any tuple only depends on its quanti�er-free type
in the Hilbert space. The notion of an indiscernible subspace is of indepen-
dent interest in the model theory of Banach and Hilbert structures, and in
particular here we use it to improve the results of Shelah and Usvyatsov in
the context of types in the full language (as opposed to ∆-types). Speci�-
cally, in this context we give a shorter proof of Shelah and Usvyatsov's main
result [29, Prop. 4.13], we improve their result on the strong uniqueness of
Morley sequences in minimal wide types [29, Prop. 4.12], and we expand
on their commentary on the �induced structure� of the span of a Morley
sequence in a minimal wide type [29, Rem. 5.6]. This more restricted case is
what is relevant to inseparably categorical Banach theories, so our work is
applicable to the problem of characterizing such theories.
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Finally, we present some relevant counterexamples and in particular we
resolve (in the negative) the question of Shelah and Usvyatsov presented at
the end of Section 5 of [29], in which they ask whether or not the span of a
Morley sequence in a minimal wide type is always a type-de�nable set.

6.1. Banach Theory Background. For K ∈ {R,C}, we think of a K-
Banach space X as being a metric structure X whose underlying set is the
closed unit ball B(X) of X with metric d(x, y) = ‖x− y‖.17 This struc-
ture is taken to have for each tuple ā ∈ K an |ā|-ary predicate sā(x̄) =∥∥∥∑i<|ā| aixi

∥∥∥, although we will always write this in the more standard form.

Note that we evaluate this in X even if
∑

i<|ā| aixi is not actually an element

of the structure X. For convenience, we will also have a constant for the zero
vector, 0, and an n-ary function σā(x̄) such that σā(x̄) =

∑
i<|ā| aixi if it is

in B(X) and σā(x̄) =
∑
i<|ā| aixi

‖∑i<|ā| aixi‖
otherwise. If |a| ≤ 1, we will write ax for

σa(x). Note that while this is an uncountable language, it is interde�nable
with a countable reduct of it (restricting attention to rational elements of
K). These structures capture the typical meaning of the ultraproduct of Ba-
nach spaces. We will often con�ate X and the metric structure X in which
we have encoded X.

De�nition 6.1. A Banach (or Hilbert) structure is a metric structure which
is the expansion of a Banach (or Hilbert) space. A Banach (or Hilbert) theory
is the theory of such a structure. The adjectives real and complex refer to
the scalar �eld K.

C∗- and other Banach algebras are commonly studied examples of Banach
structures that are not just Banach spaces.

A central problem in continuous logic is the characterization of insepara-
bly categorical countable theories, that is to say countable theories with a
unique model in each uncountable density character. The analog of Morley's
theorem was shown in continuous logic via related formalisms [1, 28], but
no satisfactory analog of the Baldwin-Lachlan theorem or its precise struc-
tural characterization of uncountably categorical discrete theories in terms of
strongly minimal sets is known. Some progress in the speci�c case of Banach
theories has been made in [29], in which Shelah and Usvyatsov introduce the
notion of a wide type and the notion of a minimal wide type, which they
argue is the correct analog of strongly minimal types in the context of in-
separably categorical Banach theories.

De�nition 6.2. A type p in a Banach theory is wide if its set of realizations
consistently contain the unit sphere of an in�nite dimensional real subspace.

A type is minimal wide if it is wide and has a unique wide extension to
every set of parameters.

17For another equivalent approach, see [5], which encodes Banach structures as many-
sorted metric structures with balls of various radii as di�erent sorts.



STRONGLY MINIMAL SETS AND CATEGORICITY IN CONTINUOUS LOGIC 73

In [29], Shelah and Usvyatsov were able to show that every Banach theory
has wide complete types using the following classical concentration of mea-
sure results of Dvoretzky and Milman, which Shelah and Usvyatsov refer to
as the Dvoretzky-Milman theorem.

Fact 6.3 (Dvoretzky-Milman theorem). Let (X, ‖·‖) be an in�nite dimen-
sional real Banach space with unit sphere S and let f : S → R be a uni-
formly continuous function. For any k < ω and ε > 0, there exists a k-
dimensional subspace Y ⊂ X and a Euclidean norm18 |||·||| on Y such that
for any a, b ∈ S∩Y , we have |||a||| ≤ ‖a‖ ≤ (1+ε)|||a||| and |f(a)−f(b)| < ε.19

Shelah and Usvyatsov showed that in a stable Banach theory every wide
type has a minimal wide extension (possibly over a larger set of parameters)
and that every Morley sequence in a minimal wide type is an orthonormal
basis of a subspace isometric to a real Hilbert space. Furthermore, they
showed that in an inseparably categorical Banach theory, every inseparable
model is prime over a countable set of parameters and a Morley sequence in
some minimal wide type, analogously to how a model of a discrete uncount-
ably categorical theory is always prime over some �nite set of parameters
and a Morley sequence in some strongly minimal type.

The key ingredient to our present work is the following result, due to
Milman. It extends the Dvoretzky-Milman theorem in a manner analogous
to the extension of the pigeonhole principle by Ramsey's theorem.20

De�nition 6.4. Let (X, ‖·‖) be a Banach space. If a0, a1, . . . , an−1 and
b0, b1, . . . , bn−1 are ordered n-tuples of elements of X, we say that ā and
b̄ are congruent if ‖ai − aj‖ = ‖bi − bj‖ for all i, j ≤ n, where we take
an = bn = 0. We will write this as ā ∼= b̄.

Fact 6.5 ([21], Thm. 3). Let S∞ be the unit sphere of a separable in�nite
dimensional real Hilbert space H and let f : (S∞)n → R be a uniformly con-
tinuous function. For any ε > 0 and any k < ω there exists a k-dimensional
subspace V of H such that for any a0, a1, . . . , an−1, b0, b1, . . . , bn−1 ∈ S∞

with ā ∼= b̄, |f(ā)− f(b̄)| < ε.

Note that the analogous result for inseparable Hilbert spaces follows imme-
diately, by restricting attention to a separable in�nite dimensional subspace.
Also note that by using Dvoretzky's theorem and an easy compactness argu-
ment, Fact 6.5 can be generalized to arbitrary in�nite dimensional Banach

18A norm |||·||| is Euclidean if it satis�es the parallelogram law, 2|||a|||2 + 2|||b|||2 =

|||a+ b|||2 + |||a− b|||2, or, equivalently, if it is induced by an inner product.
19Fact 6.3 without f is (a form of) Dvoretzky's theorem.
20The original Dvoretzky-Milman result is often compared to Ramsey's theorem, such

as when Gromov coined the term the Ramsey-Dvoretzky-Milman phenomenon [14], but in
the context of Fact 6.5 it is hard not to think of the n = 1 case as being analogous to the
pigeonhole principle and the n > 1 cases as being analogous to Ramsey's theorem.
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spaces. Also note that while Fact 6.3 and Fact 6.5 are stated for real Ba-
nach spaces, analogous statements for complex Banach spaces can be easily
derived from them.

A modern proof of Fact 6.5 would go through the extreme amenability
of the unitary group of an in�nite dimensional Hilbert space endowed with
the strong operator topology, or in other words the fact that any continuous
action of this group on a compact Hausdor� space has a �xed point, which
was originally shown in [13]. This connection is unsurprising. It is well
known that the extreme amenability of Aut(Q) (endowed with the topology
of pointwise convergence) can be understood as a restatement of Ramsey's
theorem. It is possible to use this to give a high brow proof of the existence
of indiscernible sequences in any �rst-order theory T :

Proof. Fix a �rst-order theory T . Let Q be a family of variables indexed by
the rational numbers. The natural action of Aut(Q) on SQ(T ), the Stone
space of types over T in the variables Q, is continuous and so by extreme
amenability has a �xed point. A �xed point of this action is precisely the
same thing as the type of a Q-indexed indiscernible sequence over T , and so
we get that there are models of T with indiscernible sequences. �

A similar proof of the existence of indiscernible subspaces in Banach the-
ories (Theorem 6.9) is possible, but requires an argument that the analog
of SQ(T ) is non-empty (which follows from Dvoretzky's theorem) and also
requires more delicate bookkeeping to de�ne the analog of SQ(T ) and to
show that the action of the unitary group of a separable Hilbert space is
continuous. In the end this is more technical than a proof using Fact 6.5
directly.

6.2. Asymptotically Hilbertian Spaces Do Not Interpret a Strongly
Minimal Set. For an overview of the properties of asymptotically Hilber-
tian spaces in the context of continuous logic, see [16].

Compare the following with the fact that every discrete theory interprets
a strongly minimal set.

Proposition 6.6. If T is the theory of an asymptotically Hilbertian space
then it does not have any non-algebraic locally compact imaginaries. In par-
ticular it does not interpret a strongly minimal set.

Proof. Assume that T has a non-algebraic locally compact imaginary. By
the same argument as in Proposition 5.47 this implies that it has a strongly
minimal imaginary. We may assume that this is de�nable over the unique
approximately ℵ0-saturated model M. Since T is ℵ1-categorical this implies
that every model is prime over this strongly minimal imaginary. Let A �
B �M be a pair of proper elementary extensions such that in each extension
the dimension of the strongly minimal set increases by 1. Since B � M is
a minimal extension it must be the case that the vector space dimension of
the home sort increases by precisely 1. Likewise since A � B is a minimal
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extension it must be the case that vector space dimension of the home sort
increases by precisely 1. Let b ∈ B r M realize the unique type of an
element of norm 1 orthogonal to M. Likewise let a ∈ A r B realize the
unique type of an element of norm 1 orthogonal to B. It must be the case
that A = M ⊕ V where V is a 2-dimensional Hilbert space generated by
the orthogonal basis {a, b}. Find ε > 0 small enough that inf{d(x, y) : x ∈
I(M), y ∈ I(B)rI(M)} > ε and inf{d(x, y) : x ∈ I(B), y ∈ I(A)rI(B)} >
ε, where I is the strongly minimal imaginary. Such an ε must exist since I
is strongly minimal. Now �nd δ > 0 small enough that if σ is a home sort
automorphism �xing M and satisfying d(x, σ(x)) < δ for every x, then the
induced automorphism of I, σI , satis�es d(x, σI(x)) < ε for every x (such
a δ must exist). Now let σ be the automorphism of A that �xes M and
rotates V by an angle π

2n small enough that d(x, σ(x)) < δ for every x ∈ A.
Assume without loss of generality that σn(a) = b and σn(b) = −a. Now if
we look at σnI , by construction it must be the case that σnI (I(B)) ⊆ I(B)
and σnI (I(B)) 6⊆ I(M). Therefore if we look at the structure N = σnI (B), it
must be the case that a ∈ N and I(B) = I(N), but since T has no imaginary
Vaughtian pairs this implies that N = A, which is a contradiction. �

6.3. Indiscernible Subspaces.

De�nition 6.7. Let T be a Banach theory. Let M |= T and let A ⊆M be
some set of parameters. An indiscernible subspace over A is a real subspace
V of M such that for any n < ω and any n-tuples b̄, c̄ ∈ V , b̄ ≡A c̄ if and
only if b̄ ∼= c̄.

If p is a type over A, then V is an indiscernible subspace in p (over A) if
it is an indiscernible subspace over A and b |= p for all b ∈ V with ‖b‖ = 1.

Note that, as we have de�ned it, an indiscernible subspace is a real sub-
space even if T is a complex Banach theory. Also note that an indiscernible
subspace in p is not literally contained in the realizations of p, but rather has
its unit sphere contained in the realizations of p. It might be more accurate
to talk about �indiscernible spheres,� but we �nd the subspace terminology
more familiar.

Indiscernible subspaces are very metrically regular.

Proposition 6.8. Suppose V is an indiscernible subspace in some Banach
structure. Then V is isometric to a real Hilbert space.

In particular, a real subspace V of a Banach structure is indiscernible over
A if and only if it is isometric to a real Hilbert space and for every n < ω
and every pair of n-tuples b̄, c̄ ∈ V , b̄ ≡A c̄ if and only if for all i, j < n,
〈bi, bj〉 = 〈ci, cj〉.
Proof. For any real Banach space W , if dimW ≤ 1, then W is necessarily
isometric to a real Hilbert space. If dimV ≥ 2, let V0 be a 2-dimensional
subspace of V . A subspace of an indiscernible subspace is automatically
an indiscernible subspace, so V0 is indiscernible. For any two distinct unit
vectors a and b, indiscernibility implies that for any r, s ∈ R, ‖ra+ sb‖ =
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‖sa+ rb‖, hence the unique linear map that switches a and b �xes ‖·‖. This
implies that the automorphism group of (V0, ‖·‖) is transitive on the ‖·‖-
unit circle. By John's theorem on maximal ellipsoids [17], the unit ball of
‖·‖ must be an ellipse, so ‖·‖ is a Euclidean norm.

Thus every 2-dimensional real subspace of V is Euclidean and so (V, ‖·‖)
satis�es the parallelogram law and is therefore a real Hilbert space.

The `in particular' statement follows from the fact that in a real Hilbert
subspace of a Banach space, the polarization identity [9, Prop. 14.1.2] de�nes
the inner product in terms of a particular quanti�er-free formula:

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.21 �

As mentioned in [29, Cor. 3.9], it follows from Dvoretzky's theorem that if
p is a wide type and M is a su�ciently saturated model, then p(M) contains
the unit sphere of an in�nite dimensional subspace isometric to a Hilbert
space. We re�ne this by showing that, in fact, an indiscernible subspace can
be found.

Theorem 6.9. Let A be a set of parameters in a Banach theory T and let
p be a wide type over A. For any κ, there is M |= T and a subspace V ⊆M
of dimension κ such that V is an indiscernible subspace in p over A. In
particular, any ℵ0 + κ+ |A|-saturated M will have such a subspace.

Proof. For any set ∆ of A-formulas, call a subspace V of a model N of TA
∆-indiscernible in p if every unit vector in V models p and for any n < ω
and any formula ϕ ∈ ∆ of arity n and any n-tuples b̄, c̄ ∈ V with b̄ ∼= c̄, we
have N |= ϕ(b̄) = ϕ(c̄).

Since p is wide, there is a model N |= T containing an in�nite dimensional
subspace W isometric to a real Hilbert space such that for all b ∈ W with
‖b‖ = 1, b |= p. This is an in�nite dimensional ∅-indiscernible subspace in
p.

Now for any �nite set of A-formulas ∆ and formula ϕ, assume that
we've shown that there is a model N |= T containing an in�nite dimen-
sional ∆-indiscernible subspace V in p over A. We want to show that there
is a ∆ ∪ {φ}-indiscernible subspace in V . By Fact 6.5, for every k < ω
there is a k-dimensional subspace Wk ⊆ V such that for any unit vectors
b0, . . . , b`−1, c0, . . . , c`−1 in Wk with b̄ ∼= c̄, we have that |ϕN(b̄) − ϕN(c̄)| <
2−k. If we let Nk = (Nk,Wk) where we've expanded the language by a fresh
predicate symbol D such that DNk(x) = d(x,Wk), then an ultraproduct of
the sequence Nk will be a structure (Nω,Wω) in which Wω is an in�nite
dimensional Hilbert space.

Claim: Wω is ∆ ∪ {ϕ}-indiscernible in p.

21There is also a polarization identity for the complex inner product:

〈x, y〉C =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i ‖x− iy‖2 − i ‖x+ iy‖2

)
.
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Proof of claim. Fix an m-ary formula ψ ∈ ∆∪{ϕ} and let f(k) = 0 if ψ ∈
∆ and f(k) = 2−k if ψ = ϕ. For any k ≥ 2m and b0, . . . , bm−1, c0, . . . , cm−1 in
the unit ball ofWk, there is a 2m dimensional subspaceW ′ ⊆Wk containing
b̄, c̄. By compactness of B(W ′)m (where B(X) is the unit ball of X), we have
that for any ε > 0 there is a δ(ε) > 0 such that if | 〈bi, bj〉 − 〈ci, cj〉 | < δ(ε)

for all i, j < m, then |ψN(b̄) − ψN(c̄)| ≤ f(k) + ε. Note that we can take
the function δ to only depend on ψ, speci�cally its arity and modulus of
continuity, and not on k, since B(W ′)m is always isometric to B(R2m)m.
Therefore, in the ultraproduct we will have (∀i, j < m)| 〈bi, bj〉 − 〈ci, cj〉 | <
δ(ε)⇒ |ψN(b̄)−ψN(c̄)| ≤ ε and thus b̄ ∼= c̄⇒ ψNω(b̄) = ψNω(c̄), as required.
�Claim

Now for each �nite set of A-formulas we've shown that there's a structure
(M∆, V∆) (where, again, V∆ is the set de�ned by the new predicate symbol
D) such that M∆ |= TA and V∆ is an in�nite dimensional ∆-indiscernible
subspace in p. By taking an ultraproduct with an appropriate ultra�lter
we get a structure (M, V ) where M |= TA and V is an in�nite dimensional
subspace. V is an indiscernible subspace in p over A by the same argument
as in the claim.

Finally note that by compactness we can take V to have arbitrarily large
dimension and that any subspace of an indiscernible subspace in p over A is
an indiscernible subspace in p over A, so we get the required result. �

Together with the fact that wide types always exist in Banach theories
with in�nite dimensional models [29, Thm. 3.7], we get a corollary.

Corollary 6.10. Every Banach theory with in�nite dimensional models has
an in�nite dimensional indiscernible subspace in some model. In particular,
every such theory has an in�nite indiscernible set, namely any orthonormal
basis of an in�nite dimensional indiscernible subspace.

6.4. Minimal Wide Types.

6.4.1. Characterization of Morley Sequences in Terms of Indiscernible Sub-
spaces. Compare the following Theorem 6.11 with this fact in discrete logic:
If p is a minimal type (i.e. p has a unique global non-algebraic extension),
then an in�nite sequence of realizations of p is a Morley sequence in p if and
only if it is an indiscernible sequence.

Here we are using the de�nition of Morley sequence for (possibly unstable)
A-invariant types: Let p be a global A-invariant type, and let B ⊇ A be some
set of parameters. A sequence {ci}i<κ is a Morley sequence in p over B if
for all i < κ, tp(ci/Bc<i) = p � Bc<i. Note that this de�nition of Morley
sequence agrees with the standard de�nition for types that are stable in the
sense of Lascar and Poizat (as described in [29, Def. 4.1]).

Theorem 6.11. Let p be a minimal wide type over the set A. For κ ≥ ℵ0,
a set of realizations {bi}i<κ of p is a Morley sequence in (the unique global
minimal wide extension of) p if and only if it is an orthonormal basis of an
indiscernible subspace in p over A.
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Proof. All we need to show is that an orthonormal basis of an indiscernible
subspace in p over A is a Morley sequence in p. The converse will follow
from the fact that all Morley sequences in a �xed invariant type of the same
length have the same type along with the fact that minimal wide types have
a unique global wide extension, which is therefore invariant.

Let V be an indiscernible subspace in p over A. Let {ei}i<κ be an or-
thonormal basis of V . By construction, tp(e0/A) = p. Let q be the global
minimal wide extension of p. Assume that for some j < κ we've shown for
all i < j that tp(ei/Ae<i) = q � Ae<i. Let W = span(e≥j). Since V is
an indiscernible subspace over A, for all unit norm b, c ∈ W , b ≡Ae<j c,
so in particular tp(b/Ae<j) is wide. Since p is minimal wide we must have
tp(b/Ae<j) = q � Ae<j . Therefore {ei}i<κ is a Morley sequence. �

What is unclear at the moment is the answer to this question:

Question 6.12. If p is a minimal wide type over the set A, is it stable in
the sense of [29, Def. 4.1]? In other words, is every type q extending p over
a model M ⊇ A a de�nable type?

6.4.2. Strongly Minimal Wide Types. At the moment the contents of this
section are little more than an observation, but hopefully in the future it
may be a fruitful one.

In [29], Shelah and Usvyatsov construct minimal wide types in an arbitrary
stable theory.22 This is analogous to the construction of minimal types in
discrete stable theories (i.e. fork until you do not have a non-algebraic forking
extension), but just as with that construction, the method in [29] does not
give precise control over the resulting type.

There is a natural analog of strongly minimal types in the context of wide
types. The relevant notion to generalize is De�nition 5.8. This gives the
following.

De�nition 6.13. In a Banach theory T , a global type p ∈ S1(C) is strongly
minimal wide if it is d-atomic in the set of wide global types.

An arbitrary type is strongly minimal wide if it has a unique wide global
extension and that extension is strongly minimal wide.

Just as with minimal and strongly minimal types in discrete logic, in a
stable, non-ω-stable Banach theory (with in�nite dimensional models) there
may fail to be any strongly minimal wide types, although there are always
minimal wide types. Even in an ω-stable theory, there may be minimal
wide types that are not strongly minimal wide. Nevertheless, we do have
following.

Proposition 6.14. Let T be an ω-stable Banach theory. Any open subset U
of S1(C) (the space of global types) containing a wide type contains a strongly
minimal wide type.

22More speci�cally, they showed that any stable wide type has a minimal wide
extension.
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Proof. It is not hard to see that the stated proposition is equivalent to saying
that strongly minimal wide types are dense in the set of wide types. This
follows immediately from Proposition 3.7 in [2]. �

Given a strongly minimal wide type p, by Proposition 4.6 we can �nd a
de�nable set D ⊆ S1(A) such that D ∩W = {p}, where W is the (closed)
set of wide types in S1(A). Since the set of norm 1 types is always de�nable
(by the formula 1− ‖x‖), we can require that D(x) |= ‖x‖ = 1 as well.

The issue with continuing the analogy with strongly minimal types is that
while there is an easy characterization of de�nable sets containing a unique
non-algebraic type which happens to be strongly minimal, there is not a
clear analogous characterization of de�nable sets containing a unique wide
type which happens to be strongly minimal wide.

Without the requirement that D(x) |= ‖x‖ = 1, we have a counterexam-
ple.

Proposition 6.15. Let T be a Banach theory. For any zeroset F (x) |=
‖x‖ = 1, there is a de�nable set D(x) such that D(x) ∩ J‖x‖ = 1K = F (x).

Proof. Let ϕ(x) be a [0, 1]-valued formula such that Jϕ(x) = 1K = F (x).
We need to show that the set

D := {0} ∪
{
p ∈ S1(A) : p(x) |= 0 < ‖x‖ ≤ ϕ

(
x

‖x‖

)}
is de�nable.23

First we need to show that D is closed. Let {qi}i∈I be a net limiting to
some type in D. There are two cases. Either limi∈I‖qi‖ is 0 or it is strictly
positive. The �rst case is covered by the fact that 0 ∈ D, so assume that
the second case holds. There must be some ε > 0 and some i ∈ I such that
for all j ≥ i, ‖qj‖ > ε. So now we have that limi∈I qi ∈ D if and only if

limi∈I‖qi‖ ≤ limi∈I ϕ
(

x
‖x‖

)
by the continuity of ϕ

(
x
‖x‖

)
away from 0.

To establish that D is de�nable we need to show that if {qi}i∈I limits to
a type in D, then limi∈I d(qi, D) = 0. If {qi}i∈I limits to 0, then d(qi, D) ≤
d(qi,0) = ‖qi‖ → 0 as well. If {qi} is limiting to a point other than 0, then
{‖qi‖}i∈I is eventually uniformly positive. So there is an i ∈ I such that for
all j ≥ i,

d(qj , D) ≤ d
(
qj , qj min

{
1, ‖qj‖−1ϕ

(
qj
‖qj‖

)})
= ‖qj‖ ·− ϕ

(
qj
‖qj‖

)
.

We have already established that this quantity must go to 0 if {qi}i∈I is
limiting to D r {0}, so we have that D is de�nable.

Now by construction we have that D(x) ∩ Jϕ(x) = 0K = F (x). �

This implies that given a minimal wide type p we can always �nd a de�n-
able set D such that D ∩ J‖x‖ = 1K = {p}.

23Note that while ϕ
(

x
‖x‖

)
is not technically a formula, D is nevertheless well de�ned.
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A natural attempt at a characterization would be de�nable sets which are
wide but for which

for every formula ϕ(x) and every ε > 0, there is an n < ω and a
δ > 0 such that if a �nite dimensional subspace V with dimension at
least n has d(a,D) < δ for all a ∈ V of norm 1, then for any a, b ∈ V
with norm 1, we have that |ϕ(a)− ϕ(b)| ≤ ε.

But it is only clear that this establishes that D contains a unique wide type
(which is therefore minimal wide).

The fundamental problem is that in general if D is a de�nable set and F
is a closed set, then D ∩ F may fail to be relatively de�nable in F , in the
sense of De�nition 2.9. This is of course in opposition to the behavior of
relative de�nability in discrete logic.

Even beyond this, what we really want isD to be a nice de�nable subspace
containing a unique wide type that happens to be strongly minimal wide,
but it is still entirely unclear that this is always possible.

This all leaves the following questions.

Question 6.16. If D(x) is a de�nable set such that D(x) |= ‖x‖ = 1 and
D(x) contains a unique global wide type p, is p strongly minimal wide?

Question 6.17. Is there a nice characterization of those de�nable sets which
contain a unique wide type which happens to be strongly minimal wide?

Question 6.18. Is every strongly minimal wide type contained in a de�nable
subspace in which it is the unique wide type?

6.5. Banach Theory Counterexamples. Here we collect some counterex-
amples that may be relevant to any model theoretic development of the ideas
presented in this paper.

6.5.1. No In�nitary Ramsey-Dvoretzky-Milman Phenomena in General. Un-
fortunately some elements of the analogy between the Ramsey-Dvoretzky-
Milman phenomenon and discrete Ramsey theory do not work. In partic-
ular, there is no extension of Dvoretzky's theorem, and therefore Fact 6.3,
to k ≥ ω, even for a �xed ε > 0. Recall that a linear map T : X → Y
between Banach spaces is an isomorphism if it is a continuous bijection.
This is enough to imply that T is invertible and that both T and T−1 are
Lipschitz. An analog of Dvoretzky's theorem for k ≥ ω would imply that
every su�ciently large Banach space has an in�nite dimensional subspace
isomorphic to Hilbert space, which is known to be false. Here we will see a
speci�c example of this.

The following is a well known result in Banach space theory (for a proof
see the comment after Proposition 2.a.2 in [19]).

Fact 6.19. For any distinct X,Y ∈ {`p : 1 ≤ p <∞}∪{c0}, no subspace of
X is isomorphic to Y .
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Note that, whereas Corollary 6.10 says that every Banach theory is con-
sistent with the partial type of an indiscernible subspace, the following corol-
lary says that this type can sometimes be omitted in arbitrarily large models
(contrast this with the fact that the existence of an Erdös cardinal implies
that you can �nd indiscernible sequences in any su�ciently large structure
in a countable language [18, Thm. 9.3]).

Corollary 6.20. For p ∈ [1,∞) r {2}, there are arbitrarily large models of
Th(`p) that do not contain any in�nite dimensional subspaces isomorphic to
a Hilbert space.

Proof. Fix p ∈ [1,∞) r {2} and κ ≥ ℵ0. Let `p(κ) be the Banach space of
functions f : κ → R such that

∑
i<κ |f(i)|p < ∞. Note that `p(κ) ≡ `p.

24

Pick a subspace V ⊆ `p(κ). If V is isomorphic to a Hilbert space, then any
separable V0 ⊆ V will also be isomorphic to a Hilbert space. There exists a
countable set A ⊆ κ such that V0 ⊆ `p(A) ⊆ `p(κ). By Fact 6.19, V0 is not
isomorphic to a Hilbert space, which is a contradiction. Thus no such V can
exist. �

Even assuming we start with a Hilbert space we do not get an analog of
the in�nitary pigeonhole principle (i.e. a generalization of Fact 6.3). The
discussion by Hájek and Novotný in [15, after Thm. 1] of a result of Maurey
[20] implies that there is a Hilbert theory T with a unary predicate P such
that for some ε > 0 there are arbitrarily large models M of T such that for
any in�nite dimensional subspace V ⊆ M there are unit vectors a, b ∈ V
with |PM(a)− PM(b)| ≥ ε.

Stability of a theory often has the e�ect of making Ramsey phenomena
more prevalent in its models, so there is a natural question as to whether
anything similar will happen here. Recall that a function f : S(X)→ R on
the unit sphere S(X) of a Banach space X is oscillation stable if for every
in�nite dimensional subspace Y ⊆ X and every ε > 0 there is an in�nite
dimensional subspace Z ⊆ Y such that for any a, b ∈ S(Z), |f(a)−f(b)| ≤ ε.
Question 6.21. Does (model theoretic) stability imply oscillation stability?
That is to say, if T is a stable Banach theory, is every unary formula oscil-
lation stable on models of T?

6.5.2. (Type-)De�nability of Indiscernible Subspaces and Complex Banach
Structures. A central question in the study of inseparably categorical Banach
space theories is the degree of de�nability of the `minimal Hilbert space'
that controls a given inseparable model of the theory. Results of Henson and
Raynaud in [16] imply that in general the Hilbert space may not be de�nable.

24To see this, we can �nd an elementary sub-structure of `p(κ) that is isomorphic to
`p: Let L0 be a separable elementary sub-structure of `p(κ). For each i < ω, given Li, let
Bi be the set of all f ∈ `p(κ) that are the indicator function of a singleton {i} for some i
in the support of some element of Li. Bi is countable. Let Li+1 be a separable elementary

sub-structure of `p(κ) containing Li ∪Bi.
⋃
i<ω Li+1 is equal to the span of

⋃
i<ω Bi and

so is a separable elementary sub-structure of `p(κ) isomorphic to `p.
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In [29], Shelah and Usvyatsov ask whether or not the Hilbert space can be
taken to be type-de�nable or a zeroset. In Example 6.23 we present a simple,
but hopefully clarifying, example showing that this is slightly too much to
ask.

It is somewhat uncomfortable that even in complex Hilbert structures we
are only thinking about real indiscernible subspaces rather than complex
indiscernible subspaces. In particular, our existing De�nition 6.4 is incom-
patible with complex structure:

Proposition 6.22. Let T be a complex Banach theory. Let V be an in-
discernible subspace in some model of T . For any non-zero a ∈ V and
λ ∈ Cr {0}, if λa ∈ V , then λ ∈ R.
Proof. Assume that for some non-zero vector a, both a and ia are in V . We
have that (a, ia) ≡ (ia, a), but (a, ia) |= d(ix, y) = 0 and (ia, a) 6|= d(ix, y) =
0, which contradicts indiscernibility. Therefore we cannot have that both a
and ia are in V . The same statement for a and λa with λ ∈ C r R follows
immediately, since a, λa ∈ V ⇒ ia ∈ V . �

We could de�ne a notion of complex indiscernible subspaces in which types
are uniquely determined by (complex-valued) inner products, and that may
be appropriate for complex Banach theories, as evidenced by the following.
In the case of complex Hilbert space and other Hilbert spaces with a unitary
Lie group action, Proposition 6.22 is the reason that indiscernible subspaces
can fail to be type-de�nable. We will explicitly give the simplest example of
this.

Example 6.23. Let T be the theory of an in�nite dimensional complex
Hilbert space and let C be the monster model of T . T is inseparably cate-
gorical, but for any partial type Σ over any small set of parameters A, Σ(C)
is not an in�nite dimensional indiscernible (real) subspace (over ∅).
Veri�cation. T is clearly inseparably categorical by the same reasoning that
the theory of real in�nite dimensional Hilbert spaces is inseparably categor-
ical (being an in�nite dimensional complex Hilbert space is �rst-order and
there is a unique in�nite dimensional complex Hilbert space of each in�nite
density character).

If Σ(C) is not an in�nite dimensional subspace of C, then we are done,
so assume that Σ(C) is an in�nite dimensional subspace of C. Let N be a
small model containing A. Since N is a subspace of C, Σ(N) = Σ(C) ∩ N
is a subspace of N. Let v ∈ Σ(C) r Σ(N). This implies that v ∈ C rN, so
we can write v as v‖ + v⊥, where v‖ is the orthogonal projection of v onto
N and v⊥ is complex orthogonal to N. Necessarily we have that v⊥ 6= 0.
Let N⊥ be the orthocomplement of N in C. If we write elements of C as
(x, y) with x ∈ N and y ∈ N⊥, then the maps (x, y) 7→ (x,−y), (x, y) 7→
(x, iy), and (x, y) 7→ (x,−iy) are automorphisms of C �xing N. Therefore
(v‖ + v⊥) ≡N (v‖ − v⊥) ≡N (v‖ + iv⊥) ≡N (v‖ − iv⊥), so we must have that
(v‖− v⊥), (v‖+ iv⊥), (v‖− iv⊥) ∈ Σ(C) as well. Since Σ(C) is a subspace, we
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have that b⊥ ∈ Σ(C) and ib⊥ ∈ Σ(C). Thus by Proposition 6.22, Σ(C) is not
an indiscernible subspace over ∅. �

This example is a special case of this more general construction: If G is
a compact Lie group with an irreducible unitary representation on Rn for
some n (i.e. the group action is transitive on the unit sphere), then we can
extend this action to `2 by taking the Hilbert space direct sum of countably
many copies of the irreducible unitary representation of G, and we can think
of this as a structure by adding function symbols for the elements of G. The
theory of this structure will be totally categorical and satisfy the conclusion
of Example 6.23.

Example 6.23 is analogous to the fact that in many strongly minimal
theories the set of generic elements in a model is not itself a basis/Morley
sequence. The immediate response would be to ask the question of whether
or not the unit sphere of the complex linear span (or more generally the
`G-linear span,' i.e. the linear span of G · V ) of the indiscernible subspace in
a minimal wide type agrees with the set of realizations of that minimal wide
type, but this can overshoot:

Example 6.24. Consider the structure whose universe is (the unit ball of)
`2⊕`2 (where we are taking `2 as a real Hilbert space), with a complex action
(x, y) 7→ (−y, x) and orthogonal projections P0 and P1 for the sets `2 ⊕ {0}
and {0} ⊕ `2, respectively. Let T be the theory of this structure. This is
a totally categorical complex Hilbert structure, but for any complete type p
and M |= T , p(M) does not contain the unit sphere of a non-trivial complex
subspace.

Veri�cation. T is bi-interpretable with a real Hilbert space, so it is totally
categorical. For any complete type p, there are unique values of ‖P0(x)‖
and ‖P1(x)‖ that are consistent with p, so the set of realizations of p in any
model cannot contain {λa}λ∈U(1) for a, a unit vector, and U(1) ⊂ C, the set
of unit complex numbers. �

The issue, of course, being that, while we declared by �at that this is
a complex Hilbert structure, the expanded structure does not respect the
complex structure.

So, on the one hand, Example 6.24 shows that in general the unit sphere
of the complex span won't be contained in the minimal wide type. On the
other hand, a priori the set of realizations of the minimal wide type could
contain more than just the unit sphere of the complex span, such as if we
have an SU(n) action. The complex (or G-linear) span of a set is of course
part of the algebraic closure of the set in question, so this suggests a small
re�nement of the original question of Shelah and Usvyatsov:

Question 6.25. If T is an inseparably categorical Banach theory, p is a min-
imal wide type, and M is a model of T which is prime over an indiscernible
subspace V in p, does it follow that p(M) is the unit sphere of a subspace
contained in the algebraic closure of V ?
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This would be analogous to the statement that if p is a strongly minimal
type in an uncountably categorical discrete theory and M is a model prime
over a Morley sequence I in p, then p(M) ⊆ acl(I).

6.5.3. Non-minimal Wide Types. The following example shows, unsurpris-
ingly, that Theorem 6.11 does not hold for non-minimal wide types.

Example 6.26. Let T be the theory of (the unit ball of) the in�nite Hilbert
space sum `2 ⊕ `2 ⊕ . . . , where we add a predicate D that is the distance to
S∞ t S∞ t . . . , where S∞ is the unit sphere of the corresponding copy of
`2. This theory is ω-stable. The partial type {D = 0} has a unique global
non-forking extension p that is wide, but the unit sphere of the linear span
of any Morley sequence in p is not contained in p(C).

Veri�cation. This follows from the fact that on D the equivalence relation
`x and y are contained in a common unit sphere' is de�nable by a formula,
namely

E(x, y) = inf
z,w∈D

(d(x, z) ·− 1) + (d(z, w) ·− 1) + (d(w, y) ·− 1),

where a ·− b = max{a− b, 0}. If x, y are in the same sphere, then let S be a
great circle passing through x and y and choose z and w evenly spaced along
the shorter path of S. It will always hold that d(x, z), d(z, w), d(w, y) ≤ 1,
so we will have E(x, y) = 0. On the other hand, if x and y are in di�erent
spheres, then E(x, y) =

√
2− 1.

Therefore a Morley sequence in p is just any sequence of elements of D
which are pairwise non-E-equivalent and the unit sphere of the span of any
such set is clearly not contained in D. �

6.5.4. Minimal Wide Types That are Not Strongly Minimal Wide. The fol-
lowing two examples are analogous to the simplest examples of weakly min-
imal theories in discrete logic, namely the superstable theory of a countable
sequence of independent unary predicates, each in�nite and co-in�nite, and
the ω-stable theory of a countable sequence of disjoint in�nite and co-in�nite
unary predicates.

Example 6.27 (Stable Theory with No Strongly Minimal Wide Types).
Let A be (the unit ball of) the complex Hilbert space L2[0, 1] (i.e. square
integrable functions on [0, 1] with the standard Lebesgue measure) together
with the linear operator X de�ned by (Xf)(x) = xf(x).25 Let T be the
theory of A.

The theory T is superstable, but not ω-stable, and has no strongly minimal
wide types.

Veri�cation. XA is clearly a self-adjoint bounded operator whose spectrum
is [0, 1] (as a subset of C). The self-adjunction of X is clearly �rst-order.

25A can be either a real or a complex Hilbert space, but accounts of the spectral
theorem are easier to �nd for complex Hilbert spaces.
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Recall that an operator is invertible if and only if it is bounded below and
has dense image. In a Hilbert space, if an operator fails to have dense image
then this is witnessed by some unit vector that is orthogonal to the image of
the operator (any element of the orthocomplement of the image). For any
complex number λ, consider the sentence

ϕλ = min

{
inf
x
‖Xx− λx‖+ (1 ·− ‖x‖),

∞∑
i=1

2−i inf
x

sup
y

1 ·− d(x, si(Xy))

}
.

Semantically, if M is a Hilbert structure in which X is a bounded operator,
M |= ϕλ = 0 if and only if either X−λI fails to be bounded below (the �rst
line) or X − λI fails to have dense image (the second line). So for any �xed
λ, we have that B |= ϕλ = 0 if and only if λ is in the spectrum of XB. So
if B |= T , then XB must have [0, 1] as its spectrum.

We want to characterize the type space S1(C) for any set of parameters
C in the monster model C of T . We may assume without loss of generality
that C is a linear subspace that is closed under X (this is all contained in
dcl(C)).

Note that to characterize the types in S1(C), it is enough to characterize
types p(x) which entail 〈x, c〉 = 0 for every c ∈ C as well as ‖x‖ = 1. Call
such types orthonormal.26 This is because every type p ∈ S1(C) has a unique
c ∈ C for which d(p, c) is minimal (this, as well as everything else in this
paragraph, is true in any Hilbert structure and over any set of parameters
which is a subspace). If a is some realization of p, then, assuming p is not
realized in C, we can consider the type of the vector a−c

‖a−c‖ . Let q be the

type of this vector. We have that p and q are interde�nable over C. This
means that once we have a characterization of the orthonormal types, we get
that every type p in S1(C) that is not realized in C is uniquely determined
by a triple (c, α, q) with ‖c‖2 + |α|2 ≤ 1, α 6= 0, and q an orthonormal
type. Realizations of p precisely correspond to vectors of the form c + αf ,
with f a realization of q. Note that if O(C) is the set of orthonormal types
in S1(C) (which is closed), then this argument establishes that the metric
density character of S1(C) (with regards to the d-metric) is no greater than
#dcC + #dcO(C), where #dcX is the density character of X. We will show
that #dcO(C) ≤ 2ℵ0 , regardless of the choice of C, which will establish that
T is superstable.

Any vector f ∈ C induces a linear map g 7→ 〈f, g(X)f〉 on the space of
complex polynomials g. By the spectral theorem we know that this map
extends uniquely to a map on the space of continuous functions from [0, 1]
to C. Furthermore, we know that this map takes the constant function 1
to 1, has operator norm 1, and is positive semi-de�nite, so by the Riesz

26Note that wide types are necessarily orthonormal, but the converse does not hold.
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representation theorem there is a unique Borel probability measure µf on
[0, 1] such that for any polynomial g, 〈f, g(X)f〉 =

∫
gdµf . Clearly the type

of f �xes µf . We want to show that for any Borel probability measure

(B.p.m.)27 ν on [0, 1] there is an orthonormal type p such that µf = ν for
any realization f of p and that an orthonormal type p is determined by µf
for any f realizing p.

To show that such types exist for any B.p.m. ν on [0, 1], let B be a model
containing A and C, �x a non-principal ultra�lter U on ω, and consider the
ultrapower BU .

Construct a sequence of �nite sets of intervals {In}n<ω (where we require
that intervals have positive length) with the following properties.

(1) For each n < ω, and each interval of the form [i2−n, (i + 1)2−n)
for some i < 2n, there is precisely one interval J ∈ In satisfying
J ⊆ [i2−n, (i+ 1)2−n].

(2) These are the only intervals in each In.
(3) For n 6= m, J ∈ In, and K ∈ Im, J ∩K = ∅.
It is not hard to construct such a sequence. Let Iin be the interval in In con-

tained in [i2−n, (i+ 1)2−n). For each n < ω, let fn(x) =
∑

i<2n ν([i2−n, (i+
1)2−n))χIin(x), where χJ(x) is the indicator function of J .

It is clear that for each n < ω, fn is a non-negative element of L1[0, 1] with
norm 1. Furthermore, for any distinct n,m < ω, fnfm = 0. It is also not
hard to show that for any �xed polynomial p(x),

∫
p(x)fn(x)dλ→

∫
p(x)dν

as n→∞, where λ is the Lebesgue measure on [0, 1].
Let g be the element of BU corresponding to the sequence {

√
fn}n<ω. By

construction we have that 〈g, p(X)g〉 =
∫
p(x)dν for every polynomial p(x).

This implies that µg = ν. Also note that ‖g‖ = 1.
Now to show that tp(g/C) is orthonormal, for each n < ω, let hn =

√
fn

(thought of as an element ofB). LetH = span{hn}n<ω. For any c ∈ C, let c‖
be the orthogonal projection of c onto h. Since the sequence 〈hn, c〉 = 〈hn, c‖〉
is square summable, it limits to 0. Therefore we have that 〈g, c〉 = 0. Since
we can do this for any c ∈ C, g realizes an orthonormal type over C. (It
actually realizes an orthonormal type over all of B. Also note that in this
paragraph we really only used the fact that hn is an orthonormal sequence.)

So we have that there is an orthonormal type for every B.p.m. on [0, 1].
If p ∈ S1(C) is an orthonormal type, we'll write µp for µf for some real-

ization f of p (µp doesn't depend on the choice of f). We now need to show
that for orthonormal types, p is uniquely determined by µp.

Fix orthonormal p, q ∈ S1(C) satisfying µp = µq. LetB0 be an elementary
extension of B realizing both p and q. Let f and g be these realizations. We
are going to construct an elementary chain starting with B0.

Recall that there are 2ℵ0 many B.p.m.s on [0, 1]. Let {νi}i<2ℵ0 be an

enumeration of the B.p.m.s on [0, 1]. Let κ = (2ℵ0 · #dcB0)+. By basic

27Note that a Borel probability measure on a metric space is automatically regular.
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cardinal arithmetic, κ = 2ℵ0 · κ, so we may regard ordinals i < κ as an
ordered pair (j, k), with j < 2ℵ0 and k < κ. Given Bi, construct Bi+1 as an
elementary extension of Bi that satis�es the following conditions.

• Bi+1 has density character at most κ.
• Bi+1 realizes an orthonormal type p ∈ S1(Bi) satisfying µp = νj ,
where j is the �rst element of the ordered pair (j, k) corresponding
to i.

For i < κ a limit ordinal, let Bi =
⋃
j<iBj . Note that since κ is a regular

cardinal, #dcBi ≤ κ.
Finally let Bκ =

⋃
i<κBi. Since κ is regular and uncountable, Bκ is

complete. We are going to construct an automorphism of Bκ taking f to g.
Let {bi}i<κ be an enumeration of a dense subset of Bκ.

Let f0 = f and g0 = g. We will proceed with a back-and-forth construction
of length κ.

For any set of vectors A, let spanXA be the smallest closed subspace
containing A and closed under X. It is clear that the dimension of spanXA
is no greater than ℵ0 + #dcA. For any i ≤ κ, let f<i represent the sequence
{fj}j<i and likewise for g<i.

At even stage i ·2 < κ with i > 0, given f<i and g<i, �nd the �rst element
of {bi}i<κ not contained in spanX(B0f<i). Call this element bk. Find a unit
vector fi, orthogonal to spanX(B0f<i), such that bk ∈ span ({fi} ∪ spanX(Bf<i)).
This is always possible by construction. (Also note that, up to multiplica-
tion by a unit norm complex number, fi is unique.) The odd stages proceed
analogously.

Given the full sequences f<κ and g<κ, by construction we have ensured
that spanXf<κ = spanXf<κ = Bκ. Let σ0 be the partial function from Bκ

to Bκ mapping fi to gi for each i < κ as well as h to itself for each h ∈ B0.
By orthogonality, this clearly extends to a linear map on span(B0f<κ). Fur-
thermore, the theory T says that X is a self-adjoint operator, which implies
that for any vector h in a model of T and any n,m < ω, 〈Xnh,Xmh〉 =
〈h,Xn+mh〉 =

∫
xn+mdµh(x). So since these inner products only depend

on µfi , we have that σ0 extends to a linear map that respects X on all of
spanX(B0f<κ), where by respecting X we mean that σ(Xh) = Xσ(h). Let
σ be this extension. By construction, the domain of σ is all of Bκ and the
range of σ is also Bκ. Since σ is a linear map that respects X, it is an au-
tomorphism of Bκ. Furthermore, we have that σ(f0) = g0, and so we have
that tp(f0/B0) = tp(g0/B0), and so in particular tp(f/C) = tp(g/C), as
required.

We have now established that O(C), the set of orthonormal types over
C, does not depend on the choice of C, as it always corresponds to the set
of B.p.m.s on [0, 1]. This set has cardinality 2ℵ0 and so in particular has
#dcO(C) ≤ 2ℵ0 . Thus T is superstable.

To show that T is not ω-stable we need to show that there is an ε > 0 and
an uncountable set of types in O(C) which are (>ε)-separated for any set of
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parameters C. For each r ∈ [0, 1], let δr be the Dirac measure centered at r.
If we let pr be the type such that µpr = δr, then we have that realizations
of pr are eigenvectors of X with eigenvalue r. Since X is a self-adjoint
operator, eigenvectors with distinct eigenvalues are necessarily orthogonal,
therefore we have that d(pr, ps) =

√
2 for any distinct r, s ∈ [0, 1]. Therefore

no type space S1(C) has countable metric density character, and T is not
ω-stable.

Now, �nally, we need to show that T has no strongly minimal wide types.
To do this it is su�cient to show that no p ∈ O(C) is relatively d-atomic.
Given p ∈ O(C), we will construct a sequence qi ∈ O(C) limiting to p
topologically but for which there is some ε > 0 such that d(p, qi) > ε for all
i < ω.

Claim: The logical topology on O(C) agrees with the topology of weak
convergence of measure (i.e. the coarsest topology for which µ 7→

∫
fdµ is

continuous for each continuous function f : [0, 1]→ R), thinking of the types
as their corresponding B.p.m.s.

Proof of claim. It is clear that the logical topology on O(C) is �ner
than the topology of weak convergence, since for any polynomial f(x), the
function O(C) → R de�ned by p 7→

∫
f(x)dµp is continuous, and these

functions generate the topology of weak convergence. Since polynomials are
dense in the space of continuous functions on [0, 1] under the uniform norm,
we have that p 7→

∫
f(x)dµp is continuous for each continuous f : [0, 1]→ R.

Now the fact that the topologies agree follows from the fact that if τ0 and
τ1 are two compact Hausdor� topologies on the same set such that τ0 ⊆ τ1,
then in fact τ0 = τ1. �claim

So now given p ∈ O(C) we just need to construct a sequence of B.p.m.s
{νi}i<ω converging weakly to µp, but which are all singular with regards to
it, which will guarantee that ‖νi− µp‖tv = 2 for all i < ω, where ‖·‖tv is the
total variation norm. Then we will use this to give a lower bound on d(p, qi),
where qi satis�es µqi = νi, for all i < ω (in particular we will show that any
realization of p and any realization of qi must be orthogonal).

Let A be the set of all r ∈ [0, 1] such that µp({r}) > 0. Since µp is a
probability measure, A can be at most countable. For each i < ω, let νi be a
�nite sum of Dirac measures,

∑
k<2i µp([k2−i, (k + 1)2−i))δrik

, with each rik
chosen so that rik ∈ [k2−i, (k+ 1)2−i)rA. This is always possible since A is
at most countable.

Clearly we have by construction that νi limits to µp weakly, so now we just
need to show that that realizations of p and qi must actually be orthogonal.
Let a be a realization of p and b a realization of qi. For any ε > 0, �nd an open
set U ⊂ [0, 1] not containing any rik for any i < 2k such that µp(U) > 1− ε.
Find a real polynomial f(x) such that for any x ∈ U , |f(x)−1| < ε; for each
i < 2n, |f(rik)| < ε; and for each x ∈ [0, 1], −ε < f(x) < 1 + ε.

Consider 〈a, f(X)b〉. Note that since f is a real polynomial, f(X) is a self-
adjoint operator, so we have that 〈a, f(X)b〉 = 〈f(X)a, b〉. |〈f(X)b, f(X)b〉| =
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|〈b, f(X)2b〉| =
∣∣∫ f2dνi

∣∣ < ε2, so ‖f(x)b‖ < ε. Since a is a unit vector, this
implies that |〈a, f(X)b〉| = |〈f(X)a, b〉| < ε as well. Now consider

〈a− f(X)a, a− f(X)a〉 = 〈a, a〉 − 〈a, f(X)a〉 − 〈f(X)a, a〉+ 〈f(X)a, f(X)a〉
= 1− 2〈a, f(X)a〉+ 〈a, f(X)2a〉

= 1− 2

∫
fdµp +

∫
f2dµp

= 1 +

∫
f2 − 2fdµp.

Considering the U and [0, 1] r U parts of the integral, we get that |〈a −
f(X)a, a− f(X)a〉| < (ε+ ε2) + ε(2 + 2ε+ 1 + 2ε+ ε2) = 4ε+ 5ε2 + ε3.

So now, since b is a unit vector, we have that

|〈a, b〉| ≤ |〈a− f(X)a, b〉|+ |〈f(X)a, b〉|
< 4ε+ 5ε2 + ε3 + ε = 5ε+ 5ε2 + ε3.

Since we can do this for any ε > 0, we have that 〈a, b〉 = 0 for any a |= p
and b |= qi, as required.

Since this is true of each qi, we have that the sequence {qi}i<ω does not
limit to p in the d-metric and thus p is not relatively d-atomic in O(C).

Since this is true for any p ∈ O(C) and since all wide types in S1(C) are
contained in O(C), T has no strongly minimal wide types. �

It is also possible to construct an example of an ω-stable theory with a
minimal wide type that is not strongly minimal wide.

Example 6.28. Let A be (the unit ball of) the in�nite Hilbert space sum
`2⊕ `2⊕ . . . together with a linear operator M de�ned so that for any vector
a con�ned to the nth summand, Ma = 2−na. In other words, M is a linear
functional on a in�nite dimensional Hilbert space whose eigenvalues are of
the form 2−n and each have an in�nite dimensional eigenspace.

Let T be the theory of A. T is ω-stable and has a unique type p ∈ S1(T )
with the property that any realization a of p has norm 1 and satis�esMa = 0.
This type is minimal wide but not strongly minimal wide.

Veri�cation. It is not hard to verify that if B is any model of T , then
B is a Hilbert space that decomposes into a direct sum of eigenspaces⊕

λ∈{0,2−0,2−1,2−2,... } Vλ, where Vλ is the eigenspace of M corresponding to

the eigenvalue λ.28 It is also not hard to verify that for any such model each
space Vλ for λ > 0 must be in�nite dimensional and that models of T are
precisely of this form. The approximately ω-saturated separable model of T
is the one in which each Vλ has countably in�nite dimension.29 By looking

28Note that this relies on the fact that the spectrum of M is countable. The analogous
statement is not true for operators such as X in Example 6.27, as witnessed by the model
A.

29It is actually ω-saturated, not just approximately ω-saturated.
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at the automorphisms of this structure, we can conclude that elements of
S1(T ) are in a one-to-one correspondence with square summable functions
f : {0, 2−0, 2−1, 2−2, . . . } → [0, 1] and that the d-metric corresponds to the
`2 metric on this set. We have that the type corresponding to the function g
de�ned by g(0) = 1 and g(2−n) = 0 for all n < ω is axiomatized by Mx = 0
(i.e. d(Mx,0) = 0). Let p(x) be this type. It is clear that this type is wide.

The space of global types S1(C) has a one-to-one correspondence with pairs

(c, f), where c ∈ C and f is a function as before, satisfying ‖c‖22 + ‖f‖22 ≤
1. Furthermore, we have that if q and r correspond to (c, f) and (e, h),

respectively, then d(q, r) =
√
‖c− e‖22 + ‖f − h‖22. Furthermore, we have

that if q and r correspond to (c, f) and (e, h), respectively, then d(q, r) =√
‖c− e‖22 + ‖f − h‖22. (This characterization is true of the space of types

over any model, not just C, which allows us to show that T is ω-stable.)
No type corresponding to a pair (c, f) with c 6= 0 can be wide. This

implies that the only wide global extension of p is the type corresponding
to (0, g), and hence that p is minimal wide. We also have that the types
corresponding to pairs of the form (0, g), with g(λ) = 1 if λ = 2−n (for
some particular n) and g(λ) = 0 otherwise, are wide for any n < ω. Call
the corresponding type qn. For any such type we have that d(p, qn) = 1,
but nevertheless the sequence {qn}n<ω limits to p topologically, therefore p
is not d-atomic in the set of wide global types, and is therefore not strongly
minimal wide. �

This example is of course in some sense the Hilbert space analog of the
theory of the discrete structure M in a language consisting of a countable
sequence of unary predicates {Ui}i<ω which partition M into in�nite sets,
with the unique minimal type not contained in any Ui corresponding to
p(x). Whereas in discrete logic it is known that any minimal type in an
uncountably categorical theory is actually strongly minimal, the analogous
statements for minimal and minimal wide types in continuous logic are un-
known.

Question 6.29. If T is an inseparably categorical Banach theory, is every
minimal wide type strongly minimal wide?
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