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Introduction

Continuous logic, or continuous model theory, is a generalization of discrete
first-order logic that allows the application of model theoretic machinery, such
as stability and neo-stability theory, to classes of structures studied in analysis,
such as Banach spaces and C∗-algebras.

As part of the business of doing model theory, model theorists develop very
strong intuitions about what can and cannot be said in first-order logic. I think
that it’s not unreasonable to say that a big part of this is the fact that formal
first-order logic was designed to resemble the informal first-order logic regularly
used by mathematicians.

Continuous first-order logic is more closely related to discrete first-order logic
than any other generalization of it, and I firmly believe that much of the intuition
that a typical model theorist has regarding first-order logic transfers wholesale
to continuous logic. Despite this, in my experience, many model theorists seem
to have difficulty getting a handle on what is or isn’t formalizable in continuous
logic. I think that a big part of this is down to the baroqueness of the existing
formalism and the largely unfamiliar notation.

With the aim of ameliorating this issue, this note presents a formalism that
is good for learning about and working with continuous logic (for someone al-
ready familiar with discrete model theory) but which is not good for defining
continuous logic. This formalism has two components:

• Instead of defining metric structures in such a way that their ultraproducts
are guaranteed to exist, we opt for a simpler definition of metric structure
and then take the existence of ultraproducts as an assumption.

• We shift focus from real valued formulas to formulas that correspond to
closed or open subsets of type spaces and introduce notation that resembles
familiar logical notation as closely as possible while still being literally
readable (as opposed to using a notion of approximate satisfaction).

Another lightweight approach is the one developed by Keisler in [16], which
concerns general structures and is a synthesis of the modern formalism of con-
tinuous logic with the earlier formalism of Chang and Keisler [10]. The easiest
way to describe this approach is that it is ‘continuous logic without metric,’
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which like our approach here has the advantage of dispensing with moduli of
continuity. For countable theories, it turns out that continuous logic and con-
tinuous logic without metric are more closely related than discrete logic and
discrete logic without equality in that, as shown in [16], there is always a defin-
able pseudo-metric with regards to which all formulas are uniformly continuous.
Contrast this with discrete logic without equality, in which theories don’t always
have definable equivalence relations respected by all formulas.

We will only include the proof of a statement if it is both relatively easy and
involves methods that are likely to be unfamiliar to a typical model theorist.

1 Metric Signatures and Structures

Definition 1.1. A metric signature is a discrete signature with the symbol =
replaced with the symbol d.

Of course, the notion of a signature is only really meaningful when paired
with the notion of a structure.

Definition 1.2. Given a metric signature L, a metric L-structure is a set M
together with

• a complete metric dM : M2 → R,

• a continuous function PM : Mn → R for each n-ary predicate symbol
P ∈ L∖ {d},

• a continuous function fM : Mn → M for each n-ary function symbol
f ∈ L, and

• an element cM ∈M for each constant symbol c ∈ L.

We will typically refer to the entire structure as M .

While the requirement that (M,dM ) be a complete metric space seems natu-
ral enough, we should mention that it is not the only possible choice of semantics
for continuous logic. A lot of what we will say here would still be true if we
were to remove the requirement that (M,dM ) be complete, but there are certain
things that would change significantly (such as omitting types).

Some of the precursors of continuous logic were motivated by the appearance
of natural notions of ultraproducts in analysis, so it is only natural that we
should have a notion of the ultraproduct of metric structures.

Definition 1.3. Given a family {ri}i∈I of real numbers and an ultrafilter F on
the set I, we write limi→F ri for the unique real number s for which {i ∈ I :
ri ∈ U} ∈ F for every neighborhood U of s, if it exists.

Given a family {Mi}i∈I of metric L-structures and an ultrafilter F on the
set I, the ultraproduct of {Mi}i∈I with regards to F , if it exists, is the metric
L-structure MF in which
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• each predicate symbol P has the interpretation

PMF (ā) := lim
i→F

PMi(ā(i)),

• MF is
∏

i∈I Mi modulo the equivalence relation dMF (a, b) = 0, and

• constant and function symbols have the obvious interpretations,

so that, in particular, the predicate and function interpretations are compatible
with the equivalence relation dMF (a, b) = 0.

An ultrapower, written MF , is an ultraproduct in which all factors are the
same metric structure M .

Note that the ‘if it exists’ comments are not vacuous. This is some of the
price we pay for our simpler definition of metric signature. The definition of
metric signature given in [7], for instance, is constructed in such a way that
ultraproducts of L-structures always exist.

In the interest of sweeping irrelevant detail under the rug, we will largely be
restricting our attention to classes of metric structures in which ultraproducts
always exist.

Definition 1.4. A class K of metric structures is ultraproductive if for any
family {Mi}i∈I of members of K and any ultrafilter F on I, the ultraproduct
MF exists.

Note that we are not actually requiring that the ultraproducts themselves be
in K, but also note that for any ultraproductive class K, the class of ultraprod-
ucts of members of K is also ultraproductive. Ultimately, ultraproductivity is
a blanket assumption we will be making for the sake of developing continuous
first-order logic (which is also implicit in most developments of continuous logic).
This does, however, limit the kinds of metric structures we can talk about, and
it should be noted that there are some model theoretic results regarding these
more broadly conceived metric structure [3, 6, 15].

Exercises

Exercise 1.5. Give an example of a compact ultraproduct of non-compact
metric spaces.

Exercise 1.6. Temporarily modify the definition of metric structure so that
the interpretations of predicate and function symbols need not be continuous.
Show that if M is in an ultraproductive class, then the interpretation of any
predicate or function symbol on M is continuous.

Exercise 1.7. Show that if K is an ultraproductive class of metric structures,
then for every predicate symbol P (including d), there is a real number r such
that |PM (ā)| ≤ r for every M ∈ K and ā ∈M .

Exercise 1.8. Give an example of a metric structure M satisfying the con-
clusions of Exercise 1.7 but for which MF does not exist for any non-principal
F .
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2 Formulas

The close analogies between continuous logic and discrete logic really only come
into play at the level of (partial) types. Formulas simply do not and cannot
work as they do in discrete logic. That said, defining types directly without
defining formulas is difficult and not necessarily the best approach, so we will
still need a notion of formula.

In their standard conception in continuous logic, formulas take on real values
and types are thought of in terms of equalities or inequalities of formulas (re-
ferred to as conditions). In an abstract sense, real valued formulas correspond
to continuous real valued functions on type spaces. While this, of course, works
as a rigorous framework for continuous logic and is conceptually pure, I find
in my own research that I often want to be able to state things in a way that
more closely resembles discrete logic. I think it’s safe to say that I’m not alone
in this, in that in the existing literature there are many instances of continuous
logicians breaking down and stating things in informal or semi-formal language
that resembles discrete logic,1 and there is a precedent for this kind of notation
in some of the precursors of continuous logic [1, 15].

With this in mind I have decided to present a framework in which the for-
mulas we will primarily work with correspond to open or closed subsets of type
space, rather than continuous real valued formulas on type space. Although
just as how in topology open and closed sets and real valued functions are all
important concepts, in continuous logic it is not prudent to fully eschew real
valued formulas, and we will return to them later.

Just as with our definition of metric signature, there is some price to be
paid in order to move ahead with this decision. A common strategy is to write
formulas that are to be interpreted ‘approximately’ in the sense of only nec-
essarily being true in sufficiently saturated models (used in [15], for instance).
Rather than force the reader to constantly check their own intuition of what
M |= ∃xφ(x) means, we will solve this problem by using two new quantifiers,
∀∀ and @,2 to precisely indicate which parts of formulas and sentences are only
true in some modified sense.

In order to avoid overwhelming the reader with an overly technical definition
of formulas in continuous logic, we will give an abridged—but still logically
complete—version of it and reserve the right to extend it later, although we will
only do so twice.

1See, for instance, the descriptions of the theories of atomless probability algebras and Lp

lattices in [7], the axioms for randomizations in [8], the proof of Lemma 3.3 in [13], or the
proof of Lemma 2.12 in [5], which contains the connectives and and or.

2The LATEX definitions of these symbols are:

\newcommand{\sforall}{\forall\mkern-7.2mu\forall}

\newcommand{\wexists}{\textnormal{\larger[2]\textschwa}}

The @ symbol is a slightly enlarged schwa (also known as an upside down e). This requires
the tipa package. The \larger command requires the relsize package.
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Definition 2.1. For any metric signature L, the collection of L-formulas is
defined inductively.

• For any n-ary predicate symbol P , any n-tuple t̄ of L-terms (where terms
are defined exactly as they are in discrete logic), and any real number r,
the following are L-formulas.

P (t̄) ≤ r

P (t̄) > r

P (t̄) ≥ r

P (t̄) < r

P (t̄) = r

P (t̄) ̸= r

Formulas of this sort are called atomic.

• For any L-formulas A and B, the following are L-formulas.

A ∧B A ∨B A→ B ¬A

• For any L-formula A and variable x, the following are L-formulas.

∃xA ∀xA @xA ∀∀xA

We may write x = y as a shorthand for d(x, y) = 0 and x ̸= y as a shorthand
for d(x, y) > 0. An L(x̄)-formula is an L-formula whose free variables are
among x̄, where free variable is defined in the obvious way. An L-sentence is
an L()-formula, i.e. a formula with no free variables.

All of the interpretations of standard logical symbols are standard, and the
meaning of expressions such as M |= P (ā) < 1

2 should be clear. The only things
we really need to define are the two new quantifiers.

Definition 2.2 (Weak Existential Quantification). A formula of the form @xA(x)
is modeled by a metric structure M , written M |= @xA(x), if and only if there
exists an ultrapower MF and an a ∈MF such that MF |= A(a).

Definition 2.3 (Strong Universal Quantification). A formula of the form ∀∀xA(x)
is modeled by a metric structure M , written M |= ∀∀xA(x), if and only if for
every ultrapower MF and every a ∈MF , MF |= A(a).

Note that for any formula A, @xA is logically equivalent to ¬∀∀x¬A and vice
versa.

Notation 2.4. If K is some class of L-structures and A(x̄) and B(x̄) are L-
formulas, then we will write A(x̄) |=K B(x̄) to mean that for any M in K and
any ā ∈M , if M |= A(ā), then M |= B(ā).

If Σ(x̄) is a set of L-formulas with free variables among x̄, then we will also
write Σ(x̄) |=K B(x̄) to mean that for any M in K and ā ∈ M , if M |= A(ā)
for every A(x̄) ∈ Σ(x̄), then M |= B(ā).

If K is the class of all L-structures, then we may omit it and write expressions
such as A |= B.
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A wrinkle in this approach is that while every formula we can write down
has a clear meaning, not every formula we can write down is good, so to speak.
An easy example is a formula such as ∃xP (x) = 0. It is not hard to construct
a metric structure M such that M |= ¬∃xP (x) = 0 but for which MF |=
∃xP (x) = 0 for some ultrapower MF . Since in some sense our goal is to give a
logic corresponding to our notion of ultraproduct, we have to deal with this.

Definition 2.5. For any metric signature L, the classes of open and closed
L-formulas are defined inductively.

• Atomic formulas involving <, >,
or ̸= are open.

• Atomic formulas involving ≥, ≤,
or = are closed.

Let U and V be open formulas and F and G be closed.

• U ∧ V and U ∨ V are open.

• F → U and ¬F are open.

• F ∧G and F ∨G are closed.

• U → F and ¬U are closed.

Let x be a variable.

• ∃xU and ∀∀xU are open. • @xF and ∀xF are closed.

We will tend to write open formulas using capital Roman letters that are
commonly associated with open sets, and likewise for closed formulas.

Perhaps the thing most sorely lacking here in Definition 2.5 is the ↔ con-
nective. It is impossible, in general, to express it in a way that is compatible
with the following facts.

Proposition 2.6 (Preservation of Closed Sentences). If F is a closed sentence
and {Mi}i∈I is a family of structures such that the ultraproduct MF exists and
{i ∈ I : Mi |= F} ∈ F , then MF |= F .

Proposition 2.7 (Co-preservation of Open Sentences). If U is an open sentence
and {Mi}i∈I is a family of structures such that the ultraproduct MF exists and
MF |= U , then {i ∈ I : Mi |= U} ∈ F .

Corollary 2.8 (Preservation under Ultrapowers). If X is an open or closed
formula and M |= X, then for any ultrapower MF of M , MF |= X as well.

Now we are finally in a position to talk about theories.

Notation 2.9. Given an L-structure M and a subset A ⊆M , we write LA for
the signature that is L expanded by constants for each element of A, and we
write MA for the expansion of M to an LA-structure in the obvious way.
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Definition 2.10. For any metric signature L, an L-theory T is a set of closed
L-sentences. An L-structure M is a model of T , written M |= T , if M |= F for
every F ∈ T . The class of all models of T is written Mod(T ). We say that a
theory T is ultraproductive if Mod(T ) is.

Given an L-structure M , the theory of M , written Th(M), is the set of all
closed L-sentences F such that M |= F . The elementary diagram of M , written
eldiag(M), is the theory of MM . A substructure M ⊆ N is an elementary
substructure if NM |= eldiag(M).

We say that M and N are elementarily equivalent, written M ≡ N , if
Th(M) = Th(N).

The statement of compactness is almost tautological at this point.

Proposition 2.11 (Compactness). Let T be an ultraproductive theory. For any
set of closed sentences Σ, T ∪ Σ has a model if and only if T ∪ Σ0 has a model
for every finite Σ0 ⊆ Σ.

Corollary 2.12. Let T be an ultraproductive theory. For any set of closed
sentences Σ and any open sentence U , T,Σ |= U if and only if there is a finite
Σ0 ⊆ Σ such that T,Σ0 |= U .

Finally, we should also pause to remark that the logic we have defined here
does indeed characterize ultraproducts of metric structures (for ultraproductive
classes of structures).

Definition 2.13. For any structure M , the näıve discretization of M , written
M◦, is a discrete structure whose underlying set is M in a language with a pred-
icate symbol PF for each closed formula F (with the obvious interpretations).

Lemma 2.14. If a discrete structure N satisfies N ≡ M◦ for some metric
structure M , then there is a unique metric structure N•, called the continuous
reduct of N , with a function f : N → N• such that the image of f is dense
in N• and for each ā ∈ N , if N |= PF (ā) then N• |= F (f(ā)). Furthermore,
N• ≡M , and if N0

∼= N1, then N
•
0
∼= N•

1 .

Proof Idea. The function d(a, b) = inf{r : N |= Pd≤r(a, b)} defines a pseudo-
metric on N . The completion of the quotient by this pseudo-metric gives N•.
The values of other predicates are defined similarly.

Proposition 2.15 (Continuous Keisler-Shelah Theorem). If M and N are
structures that model ultraproductive theories, then M ≡ N if and only if there
is an ultrafilter F such that MF ∼= NF .

Proof. Let F0 be a non-principal ultrafilter on ω. Argue that M ≡ N if and only
if (MF0)◦ ≡ (NF0)◦. Use the Keisler-Shelah theorem to find an ultrafilter F1

such that ((MF0)◦)F1 ∼= ((NF0)◦)F1 . Argue that (((MF0)◦)F1)• is isomorphic
to MF0⊗F1 (and likewise for N), and conclude that MF0⊗F1 ∼= MF0⊗F1 .
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This machinery of passing to näıve discretizations allows for many classical
model theoretic results to be transferred to continuous logic directly, such as the
Löwenheim-Skolem theorem and the existence of indiscernible sequences and
Ehrenfeucht-Mostowski models. Even much of the proof of Morley’s theorem
presented in Chang and Keisler [11] can be translated using this method.3 These
aren’t the prettiest proofs of such results, but they are extremely cheap.

Note that, much like Skolemization in discrete logic, passing to a discretiza-
tion of a continuous theory can be very destructive to model theoretic tameness.
For an extreme example consider the theory of atomless probability algebras
APA. As a continuous theory APA is ω-stable [7], but any discretization of APA
which still has the probability algebra operations as functions would necessarily
interpret an infinite Boolean algebra and hence would lie on the wild side of
every known dividing line.

Exercises

Exercise 2.16. Fix an open formula U(x̄). Show that there is a sequence of
closed formulas {Fi(x̄)}i<ω such that for any ā ∈M |= T , with T ultraproduc-
tive, M |= U(ā) if and only if M |=

∨
i<ω Fi(ā). (Hint: Replace P (x̄) < r with

P (x̄) ≤ r − ε.) Use this to prove Corollary 2.8.

Exercise 2.17. Fix a non-principal ultrafilter F on ω. Let M be a structure
such that MF exists. For any open or closed formula X(x̄), let X∗ be the
formula with each instance of @ replaced with ∃ and each instance of ∀∀ replaced
with ∀. Show that for any ā ∈M , M |= X(ā) if and only if MF |= X∗(ā).

Exercise 2.18. Let T be an ultraproductive theory. Show that the following
are equivalent.

• Every model of T is compact.

• For every ε > 0, there is an n < ω with n > 1 such that

T |= ∀x0 . . . xn−1

∨
i<k<n

d(xi, xk) ≤ ε.

• For every ε > 0, there is an n < ω with n > 1 such that

T |= ∀∀x0 . . . xn−1

∨
i<k<n

d(xi, xk) < ε.

Notation 2.19. In any metric structure M and for any n < ω, we will write
d(x̄, ȳ) for the max metric on n-tuples, i.e. d(x̄, ȳ) := maxi<n d(xi, yi).

3Although the resulting proof still requires a great deal of the ideas from [2], especially
regarding the correct generalization of Morley rank.
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Definition Extension 2.20. From now on we will treat expressions of the
form d(x̄, ȳ) as if they were predicate symbols in our language. We will also
now consider expressions such as |P (t̄)| = r or |P (t̄) − Q(s̄)| < r as formulas.
These formulas are either open or closed, depending on the binary relation they
contain.

Exercise 2.21 (Characterization of Ultraproductive Theories; or, Return of
the Moduli). Show that a theory T is ultraproductive if and only if

• for every predicate symbol P (including d), there is a real number r such
that T |= ∀x̄|P (x̄)| ≤ r,

• for every predicate symbol P and every ε > 0, there is a δ > 0 such that
T |= ∀x̄ȳ(d(x̄, ȳ) < δ → |P (x̄) − P (ȳ)| ≤ ε), and

• for every function symbol f and every ε > 0, there is a δ > 0 such that
T |= ∀∀x̄ȳ(d(x̄, ȳ) < δ → d(f(x̄), f(ȳ)) ≤ ε).

Conclude that we wouldn’t need the concept of ultraproductivity if this data
were somehow baked into the definition of metric signature.

Exercise 2.22. Fix a finite metric signature L, computable positive real num-
bers rP for each predicate symbol P ∈ L (including d), and computable func-
tions εP : R → R and εf : R → R for each predicate symbol P and each function
symbol f in L.

Assume that each εs satisfies εs(0) = 0 and εs(x) > 0 for all x > 0, and let
T be the theory axiomatized by

• ∀x̄|P (x̄)| ≤ rP for each predicate symbol P ∈ L (including d),

• ∀x̄ȳ(d(x̄, ȳ) < δ → |P (x̄) − P (ȳ)| ≤ εP (δ)) for each predicate symbol
P ∈ L∖ {d} and each δ > 0, and

• ∀x̄ȳ(d(x̄, ȳ) < δ → d(f(x̄), f(ȳ)) ≤ εf (δ)) for each function symbol P ∈ L
and each δ > 0.

Show that the set of pairs of closed formulas F and open formulas U such that
T, F |= U is computably enumerable (where we are only considering formulas
whose atomic sub-formulas contain rational real numbers).

3 Type Spaces I

Definition 3.1. For any tuple of variables x̄, any structure M , and any tuple
ā ∈M of the same length as x̄, the type of b̄, written tp(b̄), is the set of all closed
L-formulas F (x̄), with free variables contained in x̄, such that M |= F (ā).
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The x̄-type space of T (also called a Stone space of T ), written Sx̄(T ), is
the set of all types of tuples ā (of the appropriate length) in models M of T .
We endow this set with the topology generated by sets of the form JU(x̄)K :=
{p ∈ Sx̄(T ) : ¬U(x̄) /∈ p(x̄)}. For a closed formula F (x̄), we will also define
JF (x̄)K := {p ∈ Sx̄(T ) : F (x̄) ∈ p(x̄)}.

A partial x̄-type is any set of closed formulas with free variables contained
in x̄.

Often in this notation and terminology we may replace x̄ with n, where n is
the length of the tuple x̄.

Proposition 3.2. If T is an ultraproductive theory, then for any tuple x̄, Sx̄(T )
is a compact Hausdorff space.

This is, of course, a familiar fact, but notably the type spaces Sx̄(T ) are not
always totally disconnected.

Notation 3.3. If we have a particular structure M in mind with some subset
A ⊆M , we may write Sx̄(A) for Sx̄(Th(MA)). For a tuple b̄ ∈M , we will write
tp(b̄/A), read as the type of b̄ over A, for tp(b̄) relative to the theory Th(MA).

Exercises

Exercise 3.4. Let T be the empty theory in the empty signature (i.e. the
language of pure metric spaces). Show that S0(T ) is not compact.

Exercise 3.5. Given an example of an ultraproductive theory T such that the
Stone space S1(T ) is not a Stone space (i.e. not the Stone space of any Boolean
algebra).

Exercise 3.6. Use Exercise 2.16 to show that Sn(T ) is Hausdorff for any ul-
traproductive T .

4 Definable Sets I

The closed formulas we have described so far are really more correctly thought
of as the analog of countable partial types or countably type-definable sets in
discrete logic, rather than as a true analog of discrete formulas.4 In discrete
logic, formulas and definable sets have a variety of nice properties and can be
characterized in a few different ways. As is typical with generalizations, formerly
equivalent characterizations now fail to be so. The most direct generalization
of definable would be type-definable and co-type-definable. This concept still
makes sense in continuous logic. We could define clopen formulas to be those
that are logically equivalent to both a closed formula and an open formula, but
this condition is too strong in the sense that it is not true that types are always

4Although in truth for this analogy to be entirely correct, we would need to close the class
of closed formulas under countable conjunctions, which can be done but is unnecessary for
the current presentation.
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axiomatized by the clopen formulas they contain. In the following, we will
discuss a weaker condition which has many of the nice properties of definable
sets in discrete logic.

Definition 4.1. Let L be a metric signature with a unary predicate symbol D.
Let T be an ultraproductive L-theory containing the axiom ∀xyd(x, y) ≤ r, for
some fixed r > 0. We say that D is a distance predicate over T if T logically
entails ∀xy|D(x) −D(y)| ≤ d(x, y) and

∀xD(x) = r ∨ ∀x@y (D(y) = 0 ∧ d(x, y) = D(x)) .

Proposition 4.2. Let T be an ultraproductive theory containing the axiom
∀xyd(x, y) ≤ r. D is a distance predicate over T if and only if for every M |= T ,
DM (a) = inf{d(a, b) : DM (b) = 0}, with the understanding that inf ∅ = r.

Proof. The ⇐ direction is left as an exercise for the reader.
For the ⇒ direction, if M |= ∀xD(x) = r, then we are done, so assume that

M satisfies ∀x@y (D(y) = 0 ∧ d(x, y) = D(x)), and fix a ∈M .
For any b ∈M with D(b) = 0, we have that D(a) ≤ D(b) + d(a, b) = d(a, b),

so D(a) ≤ inf{d(a, b) : D(b) = 0}.
Fix ε > 0 with ε < 1 and a ∈ M . Let a0 = a. For each i < ω, given ai

satisfying D(ai) ≤ εiD(a). By assumption there must exists an ai+1 such that
D(ai+1) < εi+1D(a) and |D(ai)−d(ai, ai+1)| < εi+1, implying that d(ai, ai+1) <
εiD(a) + εi+1 = εi(D(a) + ε).

By construction, {ai}i<ω is a Cauchy sequence whose limit, aω, satisfies

d(a, aω) <
∑

i<ω ε
i(D(a) + ε) = D(a)+ε

1−ε , implying that inf{d(a, b) : D(b) =

0} < D(a)+ε
1−ε . Since we can do this for arbitrarily small ε > 0, we have that

inf{d(a, b) : D(b) = 0} ≤ D(a).
Therefore D(a) = inf{d(a, b) : D(b) = 0}.

We first defined the concept of a distance predicate for a predicate symbol
out of simplicity. Of course, definable sets aren’t always given by an atomic
formula, but in order to develop this concept fully, we will need real valued
formulas.

Exercises

Exercise 4.3. Show that if D0(x) and D1(x) are distance predicates over an
ultraproductive theory T , which logically entails

∀xE(x) ≤ D0(x) ∀xE(x) ≤ D1(x)

∀xE(x) = D0(x) ∨ E(x) = E1(x)

(i.e. for any M |= T , EM = min{DM
0 , DM

1 }), then E is a distance predicate
over T . What set is E the distance predicate of?

Exercise 4.4. Give an example of a metric structure M with two distance
predicates D(x) and E(x) such that max{D(x), E(x)} is not a distance predi-
cate.

11



Exercise 4.5 (Uniformly Definable Family). Suppose that T is an ultraproduc-
tive theory in a language with a binary predicate D(x, y) such that T logically
entails ∀xyd(x, y) ≤ r, ∀xyz|D(x, z) −D(y, z)| ≤ d(x, y), and

∀z [∀xD(x, z) = r ∨ ∀x@y (D(y, z) = 0 ∧ d(x, y) = D(x, z))] ,

i.e. for any parameter a ∈M |= T , DM (x, a) is a distance predicate. Show that
if M |= T is connected (in the topology induced by its metric) and for some
a ∈ M , DM (x, a) is the distance predicate of a non-empty definable set, then
for every b ∈ M , DM (x, b) is the distance predicate of a non-empty definable
set.

5 Real Formulas

The following definition is—like much of the rest of the formalism in this
article—not the best way to define this concept if one wishes to prove things
as efficiently as possible. That said, while this may not be the correct way to
define real valued formulas, I believe it is the correct way to think about real
valued formulas.

Definition 5.1. Given an ultraproductive L-theory T and a tuple of variables
x̄, a real L(x̄)-formula (over T )5 is a continuous function φ : Sx̄(T ) → R. A real
L-formula (over T ) is a real L(x̄)-formula over T for some tuple of variables x̄.
A real L-sentence is a real L()-formula, i.e. a real formula with no free variables.

For any model M of T and any tuple ā ∈ M of the same length as x̄,
φM (ā) := φ(tp(ā)).

Really these are more accurately thought of as formulas up to logical equiv-
alence, but maintaining this distinction is more trouble than it is worth for the
current presentation.

An advantage of this lightweight definition of real formula is that  Loś’s The-
orem is almost trivial.

Proposition 5.2 ( Loś’s Theorem for Real Formulas). For any ultraproductive
theory T , family {Mi}i∈I of models of T , ultrafilter F on I, and sentence φ
over T , we have that

φMF = lim
i→F

φMi .

The downside, however, is that we have to do more work to use it, proving
things that would be automatic with a more nitty-gritty syntactic definition.

Proposition 5.3 (Existence of Atomic Formulas). For type p(x̄) ∈ Sx̄(T ) and
any expression of the form P (t̄(x̄)), with P a predicate symbol and t̄ a tuple of
terms with free variables among x̄, there is a unique real number r such that
p(x̄) |= P (t̄(x̄)) = r. Furthermore, the function p 7→ r is continuous.

5What we are referring to as ‘real formulas’ here correspond to what are called ‘definable
predicates’ in [7], with their notion of formula being more restrictive in effect than what
we have given here. Note, also, that definable predicates in [7] are attached to a particular
structure, rather than a particular theory.
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Given an expression of the form P (t̄(x̄)), we will write the corresponding
real formula as P (t̄(p)), or just P (p) if t̄ is just a tuple of variables.

In discrete logic it is automatic that any formula only depends on finitely
many variables and non-logical symbols in the signature in question. Since real
formulas in continuous logic are naturally closed under uniformly convergent
limits, the best one could hope for in principle is that formulas depend on at
most countably many variables and non-logical symbols. This is indeed the
case.

Proposition 5.4 (Countable Base). For any ultraproductive L-theory T and
any real L(X)-formula φ(X) (where X is some set of variables) over T , there is
a countable L0 ⊆ L and a countable X0 ⊆ X such that there exists a real L0(X0)-
formula ψ over T ↾ L0 satisfying φ = ψ ◦ ι, where ι : SX(T ) → SX0

(T ↾ L0) is
the natural reduct map defined by ι(p) = p ↾ L0.

Proposition 5.5 (Quantification). For any ultraproductive L-theory T and any
L(x̄y)-formula φ(x̄, y) over T , there is an L(x̄)-formula ψ(x̄) over T such that
for any M |= T and any ā ∈M , ψM (ā) = inf{φM (ā, b) : b ∈M}. There is also
such a formula for sup{φM (ā, b) : b ∈M}.

We will write these formulas as infy φ(x̄, y) and supy φ(x̄, y). Note that
quantification of real formulas has a ‘philosophical’ advantage over quantifi-
cation of closed or open formulas. The quantifiers ∀∀ and @ require thinking
about ultraproducts,6 but inf and sup can be ‘computed’ within the structure
in question.

Proposition 5.6 (Iterative Construction of Formulas). For any ultraproduc-
tive theory T , the collection of real L-formulas over T is the smallest collection
of objects containing the atomic real L-formulas over T and closed under com-
position with continuous functions f : Rn → R, quantification, and uniformly
convergent limits.7

Continuous functions f : Rn → R in the context of real formulas are some-
times referred to as continuous connectives.

Exercises

Exercise 5.7 (Zerosets). Fix an ultraproductive theory T . Show that for any
Sx̄(T ) and set F ⊆ Sx̄(T ), the following are equivalent.

• There is a countable sequence {Gi(x̄)}i<ω of closed L(x̄)-formulas such
that F =

⋂
i<ωJGi(x̄)K.

• There is a real L(x̄)-formula φ(x̄) such that F = φ−1(0) (i.e. F = {p :
φ(p) = 0}).

6At least in the way in which we have defined them. It is possible to define ∀∀ and @ without
ultraproducts, but the least contrived way to do so amounts to starting with real formulas
and inf and sup.

7We could avoid uniform limits by allowing continuous functions of the form f : Rω → R.
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• F is a closed Gδ set (also known as a closed Π0
2 set).

Definition 5.8. For any theory T and any real formula φ, the logical norm of
φ over T , written ∥φ∥T , is sup{|φM (ā)| : ā ∈M |= T}.

Exercise 5.9. Fix an ultraproductive theory T . Verify that for any real
L(x̄)-formula φ over T , ∥φ∥T is finite, and show that for any ε > 0, there
is a δ > 0 such that T |= ∀x̄ȳ(d(x̄, ȳ) < δ → |φ(x̄) − φ(ȳ)| ≤ ε).

Definition 5.10. Call a real formula restricted8 if it is contained in the smallest
class of formulas containing atomic formulas and closed under supx, infx, and
the connectives x+ y, max{x, y}, min{x, y}, and r · x for each r ∈ Q.

Exercise 5.11. Show that for any ultraproductive theory T and any tuple
of variables x̄, the collection of restricted real L(x̄)-formulas is dense in the
collection of real L(x̄)-formulas over T under ∥·∥T . Conclude that the collection
of real L(x̄)-formulas over T has a ∥·∥T -dense subset of cardinality ℵ0+ |L|+ |x̄|.

Exercise 5.12 (Purely Syntactic Real Formulas). Write [x]sr for min{max{x,
r}, s}. Show that if

∑
i<ω ai < ∞ for some sequence of positive numbers

{ai}i<ω, then for any sequence {φi}i<ω of restricted L-formulas, the expression∑
i<ω[φi(x̄)]ai

−ai
is equivalent to a real L(x̄)-formula over any ultraproductive

theory T . Show that every real L(x̄)-formula over such a T is equivalent to an
expression of this form.

Exercise 5.13 (Prenex Form for Restricted Formulas). Show that any re-
stricted real L-formula is logically equivalent to one of the form

qqqx1
. . . qqqxn

min
i<k

max
j<ni

ai,j +
∑

ℓ<mi,j

bi,j,ℓPi,j,ℓ(t̄i,j,ℓ),

where each qqqxi
is either infxi

or supxi
, ai,j , bi,j,ℓ ∈ R, each Pi,j,ℓ is a predicate

symbol, and each t̄i,j,ℓ is a tuple of terms.

Definition 5.14. Fix an ultraproductive theory T . A real formula φ over T
is quantifier free if it is in the smallest class of formulas containing the atomic
formulas and closed under composition with continuous connectives and uniform
limits. T admits quantifier elimination if every real formula over it is quantifier
free.

Exercise 5.15. Show that an ultraproductive theory T admits quantifier elim-
ination if and only if every formula of the form

inf
x

max
i<k

ai +
∑
ℓ<mi

bi,ℓPi,ℓ(t̄i,ℓ)

is equivalent to a quantifier free formula, where each ai, bi,ℓ is an integer, each
Pi,ℓ a predicate symbol, and each t̄i,ℓ a tuple of terms.

8Note that, as formal expressions, restricted L-formulas clearly have an interpretation in
any L-structure, and so don’t really need to be thought of as attached to a particular theory.
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Exercise 5.16. Show that there is no equivalent of the Sheffer stroke in [0, 1]-val-
ued propositional logic, i.e. that there does not exist a single function f :
[0, 1]n → [0, 1] such that functions constructed from compositions of f are dense
in the space of continuous functions from [0, 1]m → [0, 1] for each m < ω.

6 Definable Sets II

Definition Extension 6.1. From now on we will treat expressions such as
φ(t̄) ≤ ψ(s̄), with φ and ψ real formulas, as formulas.

This final extension has a fairly significant consequence.

Proposition 6.2. Fix an ultraproductive theory T . For any countable sequence
{Fi(x̄)}i<ω of closed formulas, there is a closed formula G(x̄) logically equivalent
to

∧
i<ω Fi(x̄) over T . For any countable sequence {Ui(x̄)}i<ω, there is an open

formula V (x̄) logically equivalent to
∨

i<ω Ui(x̄) over T .

So we have completely dropped the distinction between closed formulas and
countable partial types. One argument that this is the correct perspective is that
the original finitary definition of closed formula is highly language dependent.
Appending a real formula φ as a new predicate symbol to a language can make
things which were formerly only countable partial types into closed formulas in
the most restrictive sense.

We can now finally give the definition of a definable set.

Definition 6.3. Fix an ultraproductive theory T . A closed formula F (x̄) is
a definable set over T 9 if there is a real formula φ(x̄) satisfying the condition
given in Definition 4.1 (called the distance predicate of F (x̄)) such that F (x̄)
and φ(x̄) = 0 are logically equivalent over T .

A closed formula F (x̄, ȳ) is a ȳ-uniformly definable family over T if there is
a real formula φ(x̄, ȳ) such that for any ā ∈ M |= T , φM (x̄, ā) is the distance
predicate of F (M, ā).

We may write the distance predicate of a definable set D(x̄) as d(x̄, D), and
we may write the distance predicate of a uniformly definable family D(x̄; ȳ) as
d(x̄, D(ȳ)).

The strongest justification that definable sets are natural is that they are
characterized by relative quantification.

9I must apologize for an awkward type error in this terminology. Strictly speaking a
definable set should be a subset of a structure, or at the very least a set such as a set of types.
That said, this use is in line with the modern colloquial parlance of model theory, which does
not maintain a strong distinction between definable sets and formulas.
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Proposition 6.4 (Relative Existential Quantification). Fix an ultraproductive
theory T . A closed formula D(x̄) is a definable set over T if and only if for
every open formula U(x̄, ȳ), there is an open formula V (ȳ) such that for any
M |= T and ā ∈ M , M |= V (ā) if and only if there is b̄ ∈ D(M) such that
M |= U(b̄, ā). The analogous statement is true for uniformly definable families.

Notation 6.5. In the context of an ultraproductive theory T over which the
closed formula D(x̄; ȳ) is ȳ-uniformly definable, for any open formula U(x̄, ȳ, z̄),
we will write (∃x̄ ∈ D(ȳ))U(x̄, ȳ, z̄) for the open formula whose existence is
guaranteed by Proposition 6.4. We will likewise write (∀x̄ ∈ D(ȳ))F (x̄, ȳ, z̄) for
¬(∃x̄ ∈ D(ȳ))¬F (x̄, ȳ, z̄).

Note that for any closed formula we always get relative strong universal
quantification: (∀∀x ∈ F )U(x, ȳ) can just be defined as ∀∀x(F (x) → U(x, ȳ)).

Now that we have spent two whole sections discussing this notion of a de-
finable set, we have to confront an unfortunate truth: This notion is still too
strong to always characterize types.

Example 6.6. Consider a metric structureM with the metric defined by d(x, y) =
1 ⇔ x ̸= y and in a language with a single unary predicate U such that the set
{UM (a) : a ∈ M} is a dense subset of [0, 1]. If T is the theory of M , then
S1(T ) is homeomorphic to [0, 1], but the only definable subsets of S1(T ) are ∅
and S1(T ). More generally, for any set of parameters A, every definable subset
of S1(A) is either finite or co-finite.

Note that this example is rather nice in the sense of stability theory. It
is superstable and even weakly minimal, with trivial geometry. It also has
quantifier elimination and a decidable theory (once that condition is properly
defined). So very strong traditional model theoretic tameness conditions can
fail to give a useful collection of definable sets. It will turn out, though, that
ω-stability, and more generally ‘hereditary smallness,’ is enough to ensure that
there are many definable sets.

Exercises

Exercise 6.7. Give an example of a structure M with a definable set D(x) that
is not a formula in the restrictive sense in which we originally defined them in
Definition 2.1. (Hint: Construct a definable set that requires countably many
parameters and cannot be defined over any finite set of parameters.)

Exercise 6.8. Show that a closed formula in a relational language is clopen if
and only if it admits relative existential quantification over pre-models (Defini-
tion 7.10).

Exercise 6.9 (Intersection of Definable Not Definable). Give an example of two
definable subsets of a structure whose intersection is not definable. (Hint: Pick
D and E such that D(M) ∩ E(M) = ∅, but D(MF ) ∩ E(MF ) ̸= ∅ for some
ultrafilter F , and note that if D∩E were definable, then (∃x ∈ D∩E)d(x, x) < 1
would be an open sentence satisfied by M .)
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Exercise 6.10 (Pointwise Definable ̸⇒ Uniformly Definable). Give an example
of a closed formula F (x, y) and a compact structure M such that for every a ∈
M , F (x, a) is definable, but such that F (x, y) fails to be y-uniformly definable.

Definition 6.11 (Definable Functions). Fix an ultraproductive theory T . A
closed formula F (x̄, y) gives a definable function over T if it is a x̄-uniformly
definable family such that T |= ∀x̄@yF (x̄, y) and T |= ∀x̄(∀yz ∈ F (x̄))y = z.

If we have a closed formula giving a definable function over some theory T
in question, we may write f(x̄) to represent the function it defines, and we may
freely form terms using f(x̄).

Exercise 6.12. Show that if f(x̄) is a definable function over an ultraproductive
theory T , then for every ε > 0, there is a δ > 0 such that T |= ∀x̄ȳd(x̄, ȳ) <
δ → d(f(x̄), f(ȳ)) ≤ ε.

Exercise 6.13 (Function Definable iff Type-Definable). Fix an ultraproductive
theory T and a closed formula F (x̄, y). Show that the following are equivalent.

• For any M |= T and any ā ∈M , there is always a unique b ∈M such that
M |= F (ā, b).

• F (x̄, y) gives a definable function over T .

Extend this result to arbitrary partial types Π(x̄, y).

7 Type Spaces II: Some Model Theory

Let us now turn to an actual model theoretic question: When can you omit a
type in a model of a theory? It turns out that in general omitting multiple partial
types is very complicated in continuous logic [12], but for omitting complete
types the question has a pleasingly familiar answer. A type can be omitted if
and only if it is not principal, although we need to know the correct definition
of ‘principal.’

Definition 7.1. Fix an ultraproductive theory T . For any finite tuple of vari-
ables x̄ we define a metric on Sx̄(T ), by

d(p, q) = inf{dM (ā, b̄) : ā |= p, b̄ |= q, āb̄ ∈M |= T},

where we take inf ∅ = ∞. Unless otherwise specified, whenever we refer to a
metric on a type space it is this metric.

Proposition 7.2. For any ultraproductive theory T and finite tuple of variables
x̄, d is a(n extended) metric.

Proposition 7.3 (Topological Compatibility). For any ultraproductive theory
T and finite tuple of variables x̄, the topology induced by the metric d refines
the topology on Sx̄(T ).

Furthermore, for each ε > 0, the set {(p, q) ∈ Sx̄(T )2 : d(p, q) ≤ ε} is closed.
(So in particular, closed balls B≤ε(q) are closed.)
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A topological space (X, τ) with a metric d satisfying these conditions is
referred to as a topometric space [4]. Since we now have two topologies floating
around, it will be prudent to set a careful terminological convention. Topological
words, such as ‘open’ or ‘closed,’ always refer to the compact logic topology,
unless qualified by the words ‘metric’ or ‘metrically.’ Metric words, such as
‘Lipschitz’ or ‘ball,’ always refer to the metric.

Notation 7.4. If (X, d) is a metric space and A ⊆ X is some subset of X, then
we will write A<ε for the set {x ∈ X : (∃a ∈ A)d(x, a) < ε}. We will use A≤ε

similarly.

Note that A<ε is also equal to
⋃

a∈AB<ε(a).

Proposition 7.5. For any open set U ⊆ Sn(T ), U<ε is also open.

Proof. If U(x̄) is an open formula, then ∃ȳU(ȳ) ∧ d(x̄, ȳ) < ε is also an open
formula. It is not hard to show that JU(x̄)K<ε

= J∃ȳU(ȳ) ∧ d(x̄, ȳ) < εK.
Arbitrary open sets are unions of sets of the form JU(x̄)K, so the result follows

by the fact that
(⋃

i∈I Ai

)<ε
=

⋃
i∈I A

<ε
i .

A trivial but important corollary of this proof is that in any model M |= T
(T ultraproductive) and for any ā ∈ M , if d(tp(ā), JU(x̄)K) < ε, then there is a
b̄ ∈ U(M) such that d(ā, b̄) < ε.

This metric on type space is useful for reasoning about definable sets.

Proposition 7.6. Fix an ultraproductive theory T , a finite tuple of variables x̄,
and a closed set F ⊆ Sx̄(T ). The following are equivalent.

• There is a definable set D(x̄) such that F = JD(x̄)K.

• The function p 7→ d(p, F ) is continuous.

• For every ε > 0, the set F<ε is open.

• For every ε > 0, F is contained in the interior of F<ε.

• For every ε > 0, F ⊆ (intF<ε)<ε.

• No net of points in Sx̄(T ) ‘sneaks up on F ,’ i.e. for every net of types
{pi}i∈I with limi∈I pi ∈ F , limi∈I d(pi, F ) = 0.10

If L is countable, then ‘net’ can be replaced with ‘sequence’ in the last bullet
point.

It is not hard to see that if D(x̄) is a definable set, then for any ā, d(ā, D) =
d(tp(ā), JDK).

In light of Proposition 7.6, we may sometimes refer to closed subsets of a
type space as definable if they correspond to a definable set in this way.

The omitting types theorem is stated in terms of principal types.

10This is obviously equivalent to some of the other bullet points, but is often a useful
perspective for showing that a set is not definable.
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Definition 7.7. A type p ∈ Sx̄(T ) is principal if the set {p} is definable.

It is useful to restate parts of Proposition 7.6 in the special case of principal
types.

Proposition 7.8. Fix an ultraproductive theory T . For any p ∈ Sx̄(T ), the
following are equivalent.

• p is principal.

• The function q 7→ d(p, q) is continuous.

• For every ε > 0, B<ε(p) is open.

• For every ε > 0, p ∈ intB<ε(p).

• For every ε > 0, intB<ε(p) is non-empty.

Many things with principal types work as they do in discrete logic, but there
is one notable exception. While it is true that if tp(b) is principal and tp(a/b)
is principal, then tp(ab) is principal, the converse fails.

Example 7.9. Let M be a two-sorted structure with sorts A and B where each
sort has as its underlying set the unit circle, S1. Let S1 have the discrete metric
on the sort BM , and let S1 have the Euclidean metric on the sort AM . Finally,
let f : A→ B be a function symbol such that fM (x) = x.

Let a be any element of AM , and let b = f(a). tp(ab) is principal, but
tp(a/b) is not principal.

This is related to the fact that if we think of Sx(b) as a subspace of Sxy(T ),
then d as computed in Sxy(T ) does not agree with d as computed in Sx(b).

The following definition is bad in the sense that typically we build a pre-
structure and then complete it to a structure, but it gets the point across.

Definition 7.10. An L-pre-structure is a dense subset of an L-structure M
closed under the interpretations of L’s function symbols in M .11

A pre-model is a pre-structure whose metric closure is a model of some theory
in question.

Proposition 7.11 (Omitting Types). For any ultraproductive theory T in a
countable language and any type p ∈ Sx̄(T ), T has a model omitting p if and
only if p is not principal.

Proof Idea. Since p is not principal, by the last bullet point of Proposition 7.6
there must be some ε > 0 such that B≤ε(p) has empty interior. By the same
argument as in discrete logic, we can build a countable pre-model M0 which
omits B≤ε(p). Any type q realized in the completion of M0 must therefore have
d(p, q) ≥ ε, so p is omitted.

11The definition of pre-structure also typically allows for the metric to merely be a pseudo-
metric, but we don’t need this extra complexity here.
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With omitting partial types, the obvious direction still works: If Π(x̄) is a
partial type such that intJΠ(x̄)K is non-empty, then Π(x̄) cannot be omitted
in a model of T . The difficulty is that there are partial types Π(x̄) for which
JΠ(x̄)K has empty interior but which cannot be omitted. There is also difficulty
with omitting multiple types. In discrete logic, one can simultaneously omit any
countable sequence of partial types which can each individually be omitted (in
a complete theory). This and similar facts regarding finite collections of partial
types can fail in continuous logic [12].

With some work, the omitting types theorem leads to the continuous ana-
log of the Ryll-Nardzewski theorem. This relies on the fact that any strict
refinement of a compact Hausdorff topology fails to be compact.

Proposition 7.12 (Continuous Ryll-Nardzewski Theorem). For any ultrapro-
ductive complete theory T in a countable language, the following are equivalent.

• T is ω-categorical (i.e. T has a unique model of countable density character
up to isomorphism).

• For every n < ω, the metric topology agrees with the logic topology on
Sn(T ).

• For every n < ω, the metric topology on Sn(T ) is compact.

A notable change that occurs in this context is that there are ω-categorical
theories T such that for some finite tuple of parameters ā, Tā fails to be ω-cat-
egorical (see Exercise 7.27). Finite sets of parameters are not as tame in con-
tinuous logic as they are in discrete logic. As you may be able to intuit from
Exercises 7.27 and 7.29, in general even a single parameter in continuous logic
can encode as much information as an ω-tuple of parameters in discrete logic.
Work by Ben Yaacov and Usvyatsov in [9] gives a technical condition, called
d-finiteness, which recovers some of the nice properties of finite tuples of pa-
rameters.

Another classic model theoretic result is the characterization of small theories
as those with ω-saturated countable models. Since ω-saturation is defined in
terms of finite tuples, one should suspect that the definition will need to be
modified.

At this point we arrive at another common theme which we have already
seen in a few cases. In continuous logic, the correct way to count things (such
as the size of models or the size of type spaces) is density character, rather than
cardinality, with compact playing the role of finite.

Definition 7.13. A type space Sn(T ) is small if it has countable metric density
character. A theory T is small if Sn(T ) is small for every n < ω.

Definition 7.14. A structure M is approximately ω-saturated if for any finite
tuple ā ∈ M , any p(x, ā) ∈ Sx(ā), and any ε > 0, there is b̄c ∈ M with ā ≡ b̄,
d(ā, b̄) < ε, and M |= p(c, b̄).
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Proposition 7.15. If T is a complete ultraproductive theory and M and N are
two approximately ω-saturated separable models of T , then for any finite m̄ ∈M
and n̄ ∈ N with m̄ ≡ n̄ and any ε > 0, there is an isomorphism f : M ∼= N
such that d(f(m̄), n̄) < ε.

Corollary 7.16. A countable complete ultraproductive theory T is ω-categorical
if and only if every model of it is approximately ω-saturated.

We also get a similar picture with prime models.

Definition 7.17. A model M of an ultraproductive theory T is prime if for
every model N of T , there is an elementary embedding of M into N .

A model M of an ultraproductive theory T is atomic if for every finite ā ∈M ,
tp(ā) is principal.

Proposition 7.18. Fix a countable complete ultraproductive theory T . The
following are equivalent.

• T has a prime model. • T has an atomic model.

• For every n < ω, principal types are dense in Sn(T ).

Furthermore, a separable model of T is prime if and only if it is atomic, and
if M and N are two atomic models of T , then for any finite m̄ ∈M and n̄ ∈ N
and any ε > 0, there is an isomorphism f : M ∼= N such that d(f(m̄), n̄) < ε.

Lemma 7.19. If Sn(T ) (T ultraproductive) is small, then principal types are
dense in T .

Proof. For any rational ε > 0, let Xε be a countable metrically dense subset of
Sn(T ). We have that Sn(T ) =

⋃
p∈Xε

B≤ε(p). By the Baire category theorem,
this implies that Yε =

⋃
p∈Xε

intB≤ε(p) is a dense open set (since closed balls
are closed). By the Baire category theorem again, Z =

⋂
ε∈Q>0

Yε is comeager
and therefore dense. For any p ∈ Z, we have that for any rational ε > 0, there
is an open set U of diameter at most 2ε such that p ⊆ U≤3ε ⊆ U<4ε. U<4ε has
diameter at most 10ε, so we have that p ∈ intB<11ε(p). Since we can do this
for any ε > 0, we have that p is a principal type.

Proposition 7.20. If a countable complete ultraproductive theory T has an
approximately ω-saturated model, then it has a prime model.

One thing that doesn’t survive the generalization to continuous logic is
Vaught’s never-two theorem. There is a countable complete ultraproductive
theory T with precisely two separable models up to isomorphism. T can even
be ω-stable.

Finally, as promised, smallness ensures a prevalence of definable sets.

Lemma 7.21. If X is a separable metric space and f : X → R is any function
(not necessarily continuous), then for all but at most countably many r ∈ R, the
metric closure of {f < r} := {x ∈ X : f(x) < r} contains {f ≤ r} := {x ∈ X :
f(x) ≤ r}.
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Proof. Assume not, then there is an uncountable set R of r for which the
condition fails. For each r ∈ R, let xr ∈ X be such that f(xr) = r and
d(xr, {f < r}) > 0. Since this set is uncountable, there is an ε > 0 and an
uncountable R0 ⊆ R such that for any r ∈ R0, d(xr, {f < r}) > ε, but this im-
plies that for any r, s ∈ R0 with r < s, d(xr, xs) > ε. So X has an uncountable
(> ε)-separated subset and is not separable.

Proposition 7.22. If Sn(T ) is a small type space, then for any real formula
φ, for any but countably many r ∈ R, φ ≤ r is a definable set.

Proof. By the lemma we have that for all but countably many r ∈ R, the metric
closure of Jφ < rK is Jφ ≤ rK (since φ is continuous and therefore metrically
continuous). For any such r we have that for any ε > 0, Jφ ≤ rK<ε

= Jφ < rK<ε
,

which is open, so Jφ ≤ rK is definable.

Corollary 7.23. If T is hereditarily small (i.e. for any finite tuple ā of param-
eters, Tā is a small theory), then every type space Sn(A) has a basis of definable
neighborhoods.12

Proof Idea. This follows from a compactness argument showing that for every
type p ∈ Sn(A) and every neighborhood U ∋ p, there is an open formula V
involving only finitely many parameters such that p ∈ JV K ⊆ U .

Some sufficient conditions for T to be hereditarily small are T being ω-stable,
T being hereditarily ω-categorical, and T having an ω-saturated separable model
(see Definition 7.28). In [14], I call type spaces and theories with the property
of having a basis of definable neighborhood dictionaric. One thing to note is
that, since intersections of definable sets need not be definable, this is stronger
than definable sets separating complete types, but it is equivalent to definable
sets separating partial types. This condition allows for continuous versions of
many constructions that are trivial in discrete logic. I characterize it and prove
some useful things about theories with it in [14]. For example: If Sn(T ) is a
dictionaric type space and D and E are definable subsets of it, then for any
ε > 0, there is a definable set E′ with E ⊆ E′ ⊆ E<ε such that D ∩ E′ is
definable.

Exercises

Exercise 7.24. Fix an ultraproductive theory T in a countable language. Show
that every type p ∈ Sx̄(T ) is axiomatized by a single closed formula.

Exercise 7.25. Fix an ultraproductive theory T and a finite tuple of variables
x̄. Show that d is a complete metric on Sx̄(T ).

Exercise 7.26. Formulate and prove an omitting types theorem for relational
pre-structures.

12Where a neighborhood of a point x is a set N such that x ∈ intN .
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Exercise 7.27. Let M be the metric structure whose underlying metric space
is ωω (with the metric d(a, b) = 2−n, where n is the smallest index at which
a and b disagree) and with a function f defined by f(a)(i) = a(i + 1). The
theory T = Th(M) is ω-categorical. Find a constant a ∈M such that Ta is not
ω-categorical.

Definition 7.28. For any cardinal κ, a structure M is κ-saturated if for any
set A ⊆M with |A| < κ, M realizes every type in S1(A).

Exercise 7.29. Fix a discrete structure M in a countable relational language
and form a metric structure M† whose underlying metric space is Mω (with the
same metric as in Exercise 7.27) in a signature that has the same non-logical
symbols as the signature of M together with a single new unary function symbol

f . For any predicate symbol P , let PM†
(ā) be {0, 1}-valued and equal to 1 if

and only if M |= P (ā(0)). Finally, let fM
†
(a)(n) = a(n+ 1).

Show that M† is approximately ω-saturated if and only if M is ω-saturated.
Show that M† is ω-saturated if and only if M is ω1-saturated.
Show that M† is κ-saturated if and only if M is κ-saturated for any κ > ω.

Exercise 7.30. Let {Di}i∈I be an arbitrary collection of definable sets and
let {Uj}j∈J be an arbitrary collection of open sets in some type space Sx̄(T ).
Suppose that

⋃
i∈I Di ∪

⋃
j∈J Uj is closed. Show that it is definable.

Exercise 7.31. Let {Di}i<ω be a sequence of definable subsets of Sx̄(T ). Show
that if {Di}i<ω is a Cauchy sequence with regards to the Hausdorff metric on
Sx̄(T ), then its limit is a definable set.

Definition 7.32. For any ultraproductive theory T and any pair of finite tuples
of variables x̄ and ȳ, define a metric on Sx̄ȳ(T ) by

d/ȳ(p, q) := inf{dM (ā, b̄) : āc̄ |= p, b̄c̄ |= q, āb̄c̄ ∈M |= T},

where we take inf ∅ = ∞.

Exercise 7.33. Fix an ultraproductive theory T and a pair of finite tuples
of variables x̄ and ȳ. Show that a closed formula D(x̄, ȳ) gives a ȳ-uniformly
definable family if and only if for every ε > 0, JD(x̄, ȳ)K ⊆ intJD(x̄, ȳ)K<ε

, where
A 7→ A<ε is computed with regards to d/ȳ.

Exercise 7.34. Show that for any type space Sn(T ) (T ultraproductive), if
principal types are dense in Sn(T ), then for any definable set D ⊆ Sn(T ),
principal types are dense in D as well.

Exercise 7.35. Let M be a structure with underlying set [0, 1]3 with the metric
d((a, b, c), (e, f, g)) = 1 if c ̸= g and d((a, b, c), (e, f, c)) = max{|a−e|, |b−f |} and
with unary predicates P0, P1, and Q such that PM

0 ((a, b, c)) = a, PM
1 ((a, b, c)) =

b, and QM ((a, b, c)) = c. Let T = Th(M). Show that S1(T ) can be written as
[0, 1]3 with tp(x) = (P0(x), P1(x), Q(x)). Show that the metric on S1(T ) when
written this way is actually the same as the metric on M . Show that for any
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distinct p, q ∈ S1(T ), there are definable sets D and E with p ∈ D and q ∈ E,
but also show that S1(T ) does not have a basis of definable neighborhoods.
(Hint: Show that for any non-empty definable set D and any r ∈ [0, 1], there
must be a type p ∈ D such that Q(p) = r.) Determine why it was necessary to
use [0, 1]3 instead of [0, 1]2.
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