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Abstract. We investigate the following model-theoretic independence rela-

tion: b |⌣
bu
A
c if and only if bddu(Ab)∩bddu(Ac) = bddu(A), where bddu(X) is

the class of all ultraimaginaries bounded overX. In particular, we sharpen a re-

sult of Wagner to show that b |⌣
bu
A
c if and only if ⟨Autf(M/Ab)∪Autf(M/Ac)⟩ =

Autf(M/A), and we establish full existence over hyperimaginary parameters

(i.e., for any set of hyperimaginaries A and ultraimaginaries b and c, there is a

b′ ≡A b such that b′ |⌣
bu
A
c). Extension then follows as an immediate corollary.

We also study total |⌣
bu-Morley sequences (i.e., A-indiscernible sequences

I satisfying J |⌣
bu
A
K for any J and K with J +K ≡EM

A I), and we prove that

an A-indiscernible sequence I is a total |⌣
bu-Morley sequence over A if and

only if whenever I and I′ have the same Lascar strong type over A, I and

I′ are related by the transitive, symmetric closure of the relation ‘J + K is

A-indiscernible.’ This is also equivalent to I being ‘based on’ A in a sense
defined by Shelah in his early study of simple unstable theories [9].

Finally, we show that for any A and b in any theory T , if there is an Erdős

cardinal κ(α) with |Ab|+|T | < κ(α), then there is a total |⌣
bu-Morley sequence

(bi)i<ω over A with b0 = b.

Introduction

A central theme in neostability theory is the importance of various kinds of ‘generic’
indiscernible sequences—usually with Michael Morley’s name attached to them—
such as Morley sequences in stable and simple theories, strict Morley sequences in

NIP and NTP2 theories, tree Morley sequences in NSOP1 theories, and |⌣
þ
-Morley

sequences in rosy theories. A very broad question one might ask is this: How
generically can we build indiscernible sequences in arbitrary theories?

Over a model M , we can always extend a given type p(x) ∈ Sx(M) to a global
M -invariant type q(x) ⊃ p(x) and then use this to generate a sequence (bi)i<ω

satisfying bi |= q↾Mb<i for each i < ω. In some cases the particular choice of q(x)
matters, but typically these sequences are robustly generic. Sequences produced
in this way have a certain property, which is that they are based on M in the
sense of Simon; i.e., for any I and J with I ≡M J ≡M b<ω, there is a K such
that I + K and J + K are both M -indiscernible. In NIP theories, the sequences
with this property are precisely the sequences generated by an invariant type [11,
Prop. 2.38]. Over an arbitrary set of parameters A, however, there may fail to be
any indiscernible sequences based on A. In the dense circular order, for instance,
there are no indiscernible sequences based on ∅. Other technical issues also arise
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when working over arbitrary sets, such as the necessity of considering Lascar strong
types over and above ordinary types.

A notion of independence |⌣
∗
is said to satisfy full existence if for any A, b,

and c, there is a b′ ≡A b such that b′ |⌣
∗
A
c. Together with a common model-

theoretic application of the Erdős-Rado theorem (Fact 1.2), this implies that for
any A and b, one can build an |⌣

∗
-Morley sequence, an A-indiscernible sequence

(bi)i<ω with b0 = b satisfying bi |⌣
∗
A
b<i for each i < ω (assuming |⌣

∗
also satisfies

right monotonicity). Model-theoretically tame theories often have full existence
for powerful independence notions, such as non-forking, but this does fail in some
notable tame contexts.

One independence notion that is known to satisfy full existence in arbitrary theo-
ries is that of algebraic independence [2, Prop. 1.5]: b |⌣

a

A
c if acleq(Ab)∩acleq(Ac) =

acleq(A). A natural modification of this concept is bounded hyperimaginary indepen-

dence: b |⌣
b

A
c if bddheq(Ab)∩ bddheq(Ac) = bddheq(A). Despite perhaps sounding

like an intro-to-model-theory exercise, the combinatorics necessary to prove full ex-
istence for |⌣

a
are somewhat subtle. It was recently established in [4] by Conant and

the author that |⌣
a
satisfies full existence in continuous logic and, relatedly, that

|⌣
b
satisfies full existence in discrete (and continuous) logic, answering a question

of Adler [1, Quest. A.8]. While the relations of |⌣
a
and |⌣

b
are algebraically nice,1

they seem to lack semantic consequences outside of certain special theories (such as
those with a canonical independence relation in the sense of Adler [1, Lem. 3.2]).

While being able to build |⌣
∗
-Morley sequences is certainly good, in many appli-

cations the important property is really that of being a total |⌣
∗
-Morley sequence,2

which is an A-indiscernible sequence satisfying b≥i |⌣
∗
A
b<i for every i < ω. When

|⌣
∗
lacks the algebraic properties necessary to imply that all |⌣

∗
-Morley sequences

are total |⌣
∗
-Morley sequences, it can in general be difficult to ensure their ex-

istence. Total |⌣
a
-Morley sequences arise in Adler’s characterization of canonical

independence relations. And building total |⌣
K
-Morley sequences, where |⌣

K
is the

relation of non-Kim-forking, is a crucial technical step in Kaplan and Ramsey’s
proofs of the symmetry of Kim-forking and the independence theorem in NSOP1

theories [6].
In simple theories, Morley sequences over A are not generally based on A in

the sense of Simon. They do however nearly satisfy this property. If I and J
are Morley sequences over A with I ≡L

A J ,3 then there are I ′ and K such that
I + I ′, I ′ + K, and J + K are A-indiscernible. In an NSOP1 theory T , if I is a
tree Morley sequence over M |= T and J ≡M I, then we can find K0, K1, and
K2 such that I +K0, K1 +K0, K1 +K2, and J +K2 are all M -indiscernible (see
Proposition 4.28). These facts suggest the consideration of the following equivalence
relation, originally introduced by Shelah in [9, Def. 5.1]: Let ≈A be the transitive,
symmetric closure of the relation ‘I + J is A-indiscernible.’ The intuition is that
what it means for an A-indiscernible sequence I to be ‘based on A’ is that there

1In the sense of the algebra of an independence relation, not the sense of the algebra in

‘algebraic closure.’
2This use of the term ‘total’ in the context of Morley sequences was originally introduced in

[6].
3The equivalence relation ≡L

A is the transitive closure of the relation ‘there is a model M ⊇ A

such that b ≡M c.’ If b ≡L
A c, we say that b and c have the same Lascar strong type over A.
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are few ≈A-classes among the realizations of tp(I/A). We say that I is based on A
in the sense of Shelah if there does not exist a sequence (Ii)i<κ (with κ large) such
that Ii ≡A I for each i < κ and Ii ̸≈A Ij for each i < j < κ. A simple compactness
argument shows that I is based on A in the sense of Shelah if and only if the
set of realizations of tp(I/A) decomposes into a bounded number of ≈A-classes.
In [3, Def. 2.4],4 Buechler used this relation to define a notion of canonical base.
He focuses on ∅-indiscernible sequences and gives the following definition: A is a
canonical base of the ∅-indiscernible sequence I if any automorphism σ ∈ Aut(M)
fixes A pointwise if and only if it fixes the ≈∅-class of I. One difficulty with this
concept, of course, is that not all indiscernible sequences have canonical bases in
this sense (even in T eq, e.g., [1, Ex. 3.13]).

Two of the problems we have mentioned—the lack of canonical bases for indis-

cernible sequences and the lack of semantic consequences of |⌣
a
and |⌣

b
—can both

be solved by an extremely blunt move: the introduction of ultraimaginary parame-
ters. An ultraimaginary is an equivalence class of an arbitrary invariant equivalence
relation (as opposed to a type-definable equivalence relation, as in the definition of
hyperimaginaries). Every indiscernible sequence I trivially has an ultraimaginary
canonical base in the sense of Buechler, i.e., the ≈∅-class of I itself.

Another appealing aspect of ultraimaginaries is that they characterize Lascar
strong type in the same way that hyperimaginaries characterize Kim-Pillay strong
type. An ultraimaginary [b]E is bounded over A if it has boundedly many conjugates
under Aut(M/A). We will write bddu(A) for the class of ultraimaginaries bounded
over A. In general, it turns out that b and c have the same Lascar strong type
over A if and only if they ‘have the same type over bddu(A),’ once this concept is
defined precisely.

Pure analogical thinking might lead one to consider the following independence

notion: b |⌣
bu

A
c if bddu(Ab) ∩ bddu(Ac) = bddu(A). This notion is implicit in a

result of Wagner [13, Prop. 2.12], which we restate and expand slightly (Proposi-

tion 2.4): b |⌣
bu

A
c if and only if ⟨Autf(M/Ab) ∪Autf(M/Ac)⟩ = Autf(M/A) (where

⟨X⟩ is the group generated by X). This characterization is clearly semantically

meaningful, and moreover it allows one to discuss |⌣
bu

without actually mentioning
ultraimaginaries at all. One way to see why this equivalence works is the fact that
ultraimaginaries are ‘dual’ to co-small sets of automorphisms; a group G ≤ Aut(M)
is co-small if there is a small model M such that Aut(M/M) ≤ G. For every co-
small group G, there is an ultraimaginary aE such that Aut(M/aE) = G (Proposi-
tion 1.7).

As |⌣
bu

lacks finite character, total |⌣
bu
-Morley sequences over A seem to be

correctly defined as A-indiscernible sequences (bi)i<ω with the property that for

any I + J ≡EM
A b<ω,

5 we have that I |⌣
bu

A
J . The automorphism group characteri-

zation of |⌣
bu
, together with its the nice algebraic properties and the malleability

of indiscernible sequences, leads to a pleasing characterization of total |⌣
bu
-Morley

4This preprint is difficult to track down. The relevant ideas are developed further by Adler in

[1, Sec. 3.2], which is easily available.
5I ≡EM

A J means that I and J have the same Ehrenfeucht-Mostowski type over A (i.e., for any

increasing tuples b̄ ∈ I and c̄ ∈ J of the same length, b̄ ≡A c̄). Note that I and J do not need to

have the same order type.



4 JAMES E. HANSON

sequences over sets of hyperimaginary parameters (Theorem 4.8), the equivalence
of the following.

• (bi)i<ω is a total |⌣
bu
-Morley sequence over A.

• For some infinite I and J , we have that I + J ≡EM
A b<ω and I |⌣

bu

A
J .

• For any I, I ≈A b<ω if and only if there is I ′ ≡L
A I such that b<ω + I ′ is

A-indiscernible.
• b<ω is based on A in the sense of Shelah; i.e., [b<ω]≈A

∈ bddu(A).

The condition in the third bullet point is a natural mutual generalization of Lascar
strong type and Ehrenfeucht-Mostowski type (Definition 4.5). Theorem 4.8 also

tells us that when total |⌣
bu
-Morley sequences exist, they act as particularly uniform

witnesses of Lascar strong type (Proposition 4.3).

Of course this all leaves two critical questions: Does |⌣
bu

always satisfy full

existence? And, even if it does, can we actually build total |⌣
bu
-Morley sequences

in any type over any set under any theory? The bluntness of ultraimaginaries
leaves us without one of the most important tools in model theory, compactness.

Furthermore, |⌣
bu
’s lack of finite character gives us less leeway in applying the

Erdős-Rado theorem to construct indiscernible sequences with certain properties;
we now need to be more concerned with the particular order types of the sequences
involved.

Using some of the indiscernible tree technology from [6], we are able to prove that

|⌣
bu

does satisfy full existence over arbitrary sets of (hyperimaginary) parameters in

arbitrary (discrete or continuous) theories (Theorem 3.6).6 With regards to building

total |⌣
bu
-Morley sequences, Theorem 4.8 tells us that we don’t need to worry too

much about order types. All we need to get a total |⌣
bu
-Morley sequence over

A is an A-indiscernible sequence (bi)i<ω+ω with b≥ω |⌣
bu

A
b<ω. This is fortunate

because constructing ill-ordered |⌣
bu
-Morley sequences directly seems daunting.

Unfortunately, ω + ω appears to be about one ω further than we can go without
a large cardinal. What we do get is this (Theorem 4.22): For any A and b in any
theory T , if there is an Erdős cardinal κ(α) with |Ab|+ |T | < κ(α) (for any α ≥ ω),

then there is a total |⌣
bu
-Morley sequence (bi)i<ω over A with b0 = b. Without a

large cardinal, the best we seem to be able to do (Proposition 4.17) is a half-infinite,

half-arbitrary-finite approximation of a total |⌣
bu
-Morley sequence, which we call a

weakly total |⌣
bu
-Morley sequence. These sequences also serve as uniform witnesses

of Lascar strong type without any set-theoretic hypotheses (Corollary 4.18).

1. Ultraimaginaries

Here we will set definitions and conventions, and we also take the opportunity to
collect some basic facts about ultraimaginaries which are likely folklore, although
we could not find explicit references.

Fix a theory T and a set-sized monster model M |= T .

6Although this result partially supersedes a result in [4] (full existence for |⌣
a in continuous logic

and |⌣
b in discrete or continuous logic), the proof there gives more detailed numerical information

which may be especially useful in the metric context.
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Definition 1.1. An invariant equivalence relation of arity κ is an equivalence
relation E on Mx (with |x| = κ) such that for any a, b, c, d ∈ Mx with ab ≡ cd, aEb
if and only if cEd.

An ultraimaginary of arity κ is a pair (E, aE) consisting of an invariant equiva-
lence relation E (of arity κ) and an E-equivalence class aE of some tuple a ∈ Mx.
By an abuse of notation, we will write aE for the pair (E, aE), and we may also
write [a]E if necessary for notational clarity.

Given an ultraimaginary aE , Aut(M/aE) is the set of automorphisms σ ∈
Aut(M) with the property that aE(σ · a). We write Autf(M/aE) for the group
generated by {σ ∈ Aut(M/M) : M ⪯ M, Aut(M/M) ≤ Aut(M/aE)}.

We say that bF is definable over aE if bF is fixed by every automorphism in
Aut(M/aE). We write dclu(aE) for the class of all ultraimaginaries definable over
aE . For any κ, we write dcluκ(aE) for the set of elements of dclu(aE) of arity at
most κ. We say that bF and cG are interdefinable over aE if bF ∈ dclu(aEcG) and
cG ∈ dclu(aEbF ).

We say that bF is bounded over aE if the Aut(M/aE)-orbit of bF is bounded.7

We write bddu(aE) for the class of all ultraimaginaries bounded over aE . We write
bdduκ(aE) for the set of elements of bddu(aE) of arity at most κ. We say that bF
and cG are interbounded over aE if bF ∈ bddu(aEcG) and cG ∈ bddu(aEbF ).

We write aE ≡ bE to mean that there is an automorphism σ ∈ Aut(M) with
σ · aE = bE . We write bF ≡aE

cF to mean that aEbF ≡ aEcF (i.e., there is
σ ∈ Aut(M/aE) such that σ · bF = cF ).

Note that real elements, imaginaries, and hyperimaginaries can all be regarded
as ultraimaginaries.

An easy counting argument shows that bddu is a closure operator (i.e., for any
aE , bF , and cG, if bF ∈ bddu(aE) and cG ∈ bddu(bF ), then cG ∈ bddu(aE)).

We will also sometimes define an invariant equivalence relation E on the real-
izations of a single type p(x) over ∅. Equivalence classes of such can be thought
of as ultraimaginaries by using the same trick that is commonly used with hy-
perimaginaries: Consider the invariant equivalence relation E′(x, y) defined by
x = y ∨ (E(x, y) ∧ x |= p ∧ y |= p).

For the sake of clarity, we will reserve the notation aE for ultraimaginaries and
write hyperimaginaries in the same way we write real elements. For the sake of
cardinality issues, we will also take all hyperimaginaries to be quotients of countable
tuples by countably type-definable equivalence relations. It is a standard fact that
every hyperimaginary is interdefinable with some set of hyperimaginaries of this
form.

Fact 1.2 (Shelah8). Let (bi)i<λ be a sequence of tuples with |bi| < κ and let A
be some set of parameters. If λ ≥ ℶ(2κ+|A|+|T |)+ , then there is an A-indiscernible

sequence (b′i)i<ω such that for every n < ω, there are i0 < · · · < in < κ such that
b′0 . . . b

′
n ≡A bi0 . . . bin .

Lemma 1.3. Let M be a model. If aE ∈ bddu(M), then aE ∈ dclu(M).

7Specifically, by Proposition 1.4, this is equivalent to bF having at most 2|ab|+|T | conjugates

over aE .
8See [12, Lem. 7.2.12] for a modern presentation of the result.
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Proof. Assume that aE /∈ dclu(M). Let p(x) be a globalM -invariant type extending
tp(a/M). Assume that there are a0 and a1 realizing tp(a/M) such that a0 /Ea1. For
any i > 1, given a<i, let ai |= p↾Ma<i. Since aiaj ≡M aiak for any j, k < i, we
must have that ai /Eaj for any j < i. Since we can do this indefinitely, we have that
aE is not bounded over M . □

Proposition 1.4. For any ultraimaginaries aE and bF , the following are equiva-
lent.

(1) bF /∈ bddu(aE).
(2) There is an a-indiscernible sequence (ci)i<ω such that c0 ≡aE

b and ci /Fcj
for each i < j < ω.

(3) |Aut(M/aE) · bF | > 2|ab|+|T |.

Proof. (3)⇒(2). Let (biF )i<(2|ab|+|T |)+ be an enumeration of Aut(M/aE) · bF . Let

M ⊇ a be a model with |M | ≤ |a|+ |T |. Let x be a tuple of variables of the same
length as b. There are at most 2|ab|+|T | types in Sx(M). Therefore, there must be
i < j < (2|ab|+|T |)+ such that bi ≡M bj . Let p(x) be a global M -invariant type
extending tp(bi/M), and let (ci)i<ω be a Morley sequence generated by p(x) over
Mbibj . Since bi /Fbj , we must have that c0 /Fbi. Therefore ci /Fcj for any i < j < λ,
and so (ci)i<ω is the required a-indiscernible sequence.

(2)⇒(1). Given an a-indiscernible sequence (ci)i<ω as in the statement of the
proposition, we can extend it to an a-indiscernible sequence (ci)i<λ for any λ. These
sequences will still satisfy that ci /Fcj for any i < j < λ, so bF has an unbounded
number of Aut(M/aE)-conjugates and bF /∈ bddu(aE).

(1)⇒(3). This is immediate from the definition of bddu(aE). □

Corollary 1.5. For any λ, bdduλ(aE) has cardinality at most 2|a|+2λ+|T |
.

Proof. For each α ≤ λ, |Sα+α(T )| ≤ 2λ+|T |. Since an invariant equivalence relation
on α-tuples is specified by a subset of Sα+α(T ), this implies that for each α ≤ λ,

there are at most 22
λ+|T |

invariant equivalence relations on α-tuples. Therefore the
total number of invariant equivalence relations on tuples of length at most λ is

λ · 22λ+|T |
= 22

λ+|T |
. For each such F , the set {bF : bF ∈ bdduλ(aE)} has cardinality

at most 2|a|+λ+|T | by Proposition 1.4. Finally, 22
λ+|T | · 2|a|+λ+|T | = 2|a|+2λ+|T |

. □

1.1. Co-small groups of automorphisms. Here we will see that ultraimaginar-
ies are essentially the same thing as reasonable subgroups of Aut(M).

Definition 1.6. A group G ≤ Aut(M) is co-small if there is a small model M such
that Aut(M/M) ≤ G.

Clearly for any ultraimaginary aE , Aut(M/aE) is co-small. The converse is true
as well.

Proposition 1.7. For any co-small G, if Aut(M/M) ≤ G, then there is an ultra-
imaginary aE such that G = Aut(M/aE) where a is some enumeration of M .

Proof. Let M be a small model witnessing that G is co-small. Consider the binary
relation defined on realizations of tp(M) (in some fixed enumeration) defined by
E(M0,M1) if and only if there is σ ∈ Aut(M) and τ ∈ G such that σ · M = M0

and στ · M = M1. We need to verify that E is an invariant equivalence relation.
Reflexivity is obvious.
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Invariance. Suppose that E(M0,M1), as witnessed by σ ∈ Aut(M) and τ ∈ G. Fix
σ′ ∈ Aut(M). We then have that σ′σ ·M = σ′ ·M0 and σ′στ ·M = σ′ ·M1, whence
E(σ′ ·M0, σ

′ ·M1).

Symmetry. If σ · M = M0 and στ · M = M1 with σ ∈ Aut(M) and τ ∈ G, then
σττ−1 · M = M0 and στ · M = M1. We have στ ∈ Aut(M) and τ−1 ∈ G, so
E(M1,M0).

Transitivity. Suppose that for σ, σ′ ∈ Aut(M) and τ, τ ′ ∈ G, we have that σ ·M =
M0, στ · M = σ′ · M = M1, and σ′τ ′ · M = M2. This implies that (στ)−1σ′ =
τ−1σ−1σ′ ∈ Aut(M/M) ≤ G. Since τ ∈ G as well, we have that σ−1σ′ ∈ G.
Therefore σ−1σ′τ ′ ∈ G. Finally, σσ−1σ′τ ′ ·M = M2, so E(M0,M2).

Consider the ultraimaginary ME . For any τ ∈ G, we clearly have E(M, τ ·M), so
G ≤ Aut(M/ME). Conversely, suppose that α ∈ Aut(M/ME). By definition, this
implies that E(M,α ·M), so there are σ ∈ Aut(M) and τ ∈ G such that σ ·M = M
and στ ·M = α ·M . Therefore σ, τ−1σ−1α ∈ Aut(M/M) ≤ G. Since τ−1 ∈ G, we
therefore have that α ∈ G. □

Corollary 1.8. If bF ∈ bddu(aE), then there is cG ∈ bddu(aE) of arity at most
|a|+ |T | such that bF and cG are interdefinable over ∅. Furthermore, c can be taken
to be an enumeration of any model of size at most |a|+ |T | containing a.

Proof. There is a model M ⊇ a with |M | ≤ |a|+ |T |. By Lemma 1.3, we have that
Aut(M/M) ≤ Aut(M/bF ), so by Proposition 1.7, we have that there is cG with
arity at most |a| + |T | which satisfies that Aut(M/cG) = Aut(M/bF ) (i.e., cG and
bF are interdefinable over ∅). Furthermore, we can take c to be an enumeration of
M . □

Definition 1.9. For any co-small group G, we write [[G]] for some arbitrary ultra-
imaginary aE of minimal arity satisfying G = Aut(M/aE). We will write dclu[[G]]
and dcluλ[[G]] for dclu([[G]]) and dcluλ([[G]]) and likewise with bddu. (Note that
dclu[[G]] and bddu[[G]] only depend on G, not on the particular choice of [[G]].)

It is immediate from Proposition 1.7 that for any co-small G and H, [[G]] ∈
dclu[[H]] if and only if G ≥ H. A similar statement for bddu is given in Proposi-
tion 1.12 below.

Now we can see that intersections of dclu-closed sets (and therefore also bddu-
closed sets) have semantic significance in arbitrary theories, in that intersections
correspond to joins in the lattice of co-small groups of automorphisms.

Proposition 1.10. For any aE, bF , cG, and c′G, the following are equivalent.

(1) cG ≡dcluλ(aE)∩dcluλ(bF ) c
′
G for all λ.

(2) There is σ ∈ ⟨Aut(M/aE) ∪Aut(M/bF )⟩ such that σ · cG = c′G.
(3) There is a sequence (aibici)i≤n such that a0 = a, b0 = b, c0 = c, cnG = c′G,

and for each i < n,
• if i is even, then ai = ai+1 and biF c

i
G ≡ai

E
bi+1
F ci+1

G and

• if i is odd, then bi = bi+1 and aiEc
i
G ≡biF

ai+1
E ci+1

G .

Proof. Let H = ⟨Aut(M/aE) ∪Aut(M/bF )⟩.
Claim. dcluλ(aE)∩ dcluλ(bF ) and [[H]] are interdefinable (i.e., dcluλ(aE)∩ dcluλ(bF ) ⊆
dclu([[H]]) and [[H]] ∈ dclu(dcluλ(aE) ∩ dcluλ(bF ))) for all sufficiently large λ.
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Proof of claim. Clearly [[H]] ∈ dclu(aE) ∩ dclu(bF ), so [[H]] ∈ dcluλ(aE) ∩ dcluλ(bF )
for all sufficiently large λ.

Conversely, suppose that dI ∈ dclu(aE) ∩ dclu(bF ). Any σ ∈ H is a product of
elements of Aut(M/aE) and Aut(M/bF ), so it must fix dI . Therefore Aut(M/dI) ≥
H and hence dI ∈ dclu[[H]]. □claim

So now we have that cG ≡dcluλ(aE)∩dcluλ(bF ) c
′
G holds for sufficiently large λ if and

only if cG ≡[[H]] c
′
G. Also note that cG ≡dcluλ(aE)∩dcluλ(bF ) c′G for sufficiently large

λ and only if the same holds for any λ. Therefore we have that (1) and (2) are
equivalent.

There is a σ ∈ H with σ · cG = c′G if and only if there are α0, . . . , αn−1 ∈
Aut(M/aE) and β0, . . . , βn−1 ∈ Aut(M/bF ) such that σ = αn−1βn−1 . . . β1α0β0.

For (2)⇒(3), assume that there are such ᾱ and β̄ for which

αn−1βn−1αn−2 . . . β1α0β0 · cG = c′G.

Let a0b0c0 = abc, a1b1c1 = αn−1 · (a0b0c0), a2b2c2 = αn−1βn−1 · (a0b0c0), and so on
up to a2nb2nc2n = αn−1βn−1αn−2 . . . β1α0β0 · (a0b0c0). Clearly we have that c2nG =
c′G, so we just need to verify that (aibici)i≤2n is the required sequence. If i < 2n is

even, then αi ∈ Aut(M/aE), so aiE = ai+1
E . Furthermore, b0F c

0
G ≡a0

E
αi · (b0F c0G), so

by invariance,

αn−1βn−1 . . . βi+1 · (b0F c0G) ≡αn−1βn−1...βi+1·a0
E
αn−1βn−1 . . . βi+1αi · (b0F c0G),

which is the same as biF c
i
G ≡ai

E
bi+1
F ci+1

G . If i < 2n is odd, then the same argument

tells us that biF = bi+1
F and aiEc

i
G ≡biF

ai+1
E ci+1

G .

For (3)⇒(2), the above argument is reversible. Fix (aiEb
i
F c

i
G)i≤2n satisfying the

conditions of (3). First we can find αn−1 ∈ Aut(M/aE) such that α−1
n−1 ·(a1Eb1F c1G) =

a0Eb
0
F c

0
G. Then we can find βn−1 ∈ Aut(M/bF ) such that β−1

n−1α
−1
n−1 · (a2Eb2F c2G) =

a0Eb
0
F c

0
G. Then we can find αn−2 ∈ Aut(M/aE) such that α−1

n−2β
−1
n−1α

−1
n−1·(a3Eb3F c3G) =

a0Eb
0
F c

0
G. Continuing inductively in this way, we find α0, . . . , αn−1 ∈ Aut(M/aE)

and β0, . . . , βn−1 ∈ Aut(M/bF ) such that the same equalities as in the (2)⇒(3)
proof hold. Therefore there is a σ ∈ H (namely αn−1βn−1αn−2 . . . β1α0β0) such
that σ · cG = c′G. □

A similar statement is true for arbitrary families of ultraimaginaries: If (aiEi
)i∈I

is a (possibly large) family of ultraimaginaries, then cG ≡⋂
i∈I dcluλ(a

i
Ei

) c′G if and

only if there is a σ ∈
〈⋃

i∈I Aut(M/aiEi
)
〉
such that σ · cG = c′G. There is also an

analog of (3), but it is more awkward to state.

1.2. Lascar strong type.

Definition 1.11. For any co-small group G ≤ Aut(M), let Gf be the group gen-
erated by all groups of the form Aut(M/M) ≤ G with M a small model. For any
ultraimaginary aE , let Autf(M/aE) = Aut(M/aE)f .

We say that bF and cF have the same Lascar strong type over aE , written bF ≡L
aE

cF , if there is σ ∈ Autf(M/aE) such that σ · bF = cF .

Proposition 1.12. For any co-small groups G and H, [[G]] ∈ bddu[[H]] if and
only if G ≥ Hf .

Proof. Assume that [[G]] ∈ bddu[[H]]. Note that for a model M , by Lemma 1.3,
we have that [[G]] ∈ bddu(M) if and only if G ≥ Aut(M/M). Therefore, for any
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model M with [[H]] ∈ bddu(M), we must have that [[G]] ∈ bddu[[H]] ⊆ bddu(M)
and so G ≥ Aut(M/M). Since [[H]] ∈ bddu(M) if and only if H ≥ Aut(M/M), we
have that G ≥ Hf .

Conversely, assume that G ≥ Hf . This implies that for any small model M
with [[H]] ∈ bddu(M), we have Hf ≥ Aut(M/M), so G ≥ Aut(M/M) and [[G]] ∈
dclu(M). Fix some such model N . Assume for the sake of contradiction that
[[G]] /∈ bddu[[H]]. For any λ, we can find (σi)i<λ in H = Aut(M/[[H]]) such
that σi · [[G]] ̸= σj · [[G]] for each i < j < λ. Since [[G]] = aE for some a with

|a| ≤ |N | by Proposition 1.7, we have that if λ is larger than 2|N |+|T |, there must
be i < j < λ such that σi · [[G]] ≡N σj · [[G]]. Let N ′ = σ−1

i ·N . N ′ is now a model

satisfying Aut(M/N ′) ≤ G. So [[G]] ∈ dclu(N ′), but [[G]] ≡N ′ σ−1
i σj · [[G]] and

[[G]] ̸= σ−1
i σj · [[G]], which is a contradiction. □

An important fact about ultraimaginaries is that bddu has the same relationship
with Lascar strong types that bddheq has with Kim-Pillay strong types.

For any aE and bF , by an abuse of notation, we’ll write [bF ]≡L
aE

for [ab]G, where

G(ab, a′b′) holds if and only if aEa′ and bF ≡L
aE

b′F . Note in particular that

[bF ]≡L
aE

= [b′F ]≡L
aE

if and only if bF ≡L
aE

b′F .

Proposition 1.13. For any ultraimaginaries aE, bF , and cF , the following are
equivalent.

(1) bF ≡L
aE

cF .
(2) bF ≡bddu

λ(aE) cF for all λ.

(3) bF ≡bddu
|a|+|T |(aE) cF .

Proof. To see that (1) implies (3), fix a model M with aE ∈ bddu(M) and some
automorphism σ ∈ Aut(M/M). By Lemma 1.3, we have that Aut(M/M) ≤
Aut(M/ bddu|a|+|T |(aE)). Therefore bF ≡bddu

|a|+|T |(aE) σ · bF . By induction, we

therefore have that bF ≡L
aE

cF implies bF ≡bddu
|a|+|T |(aE) cF .

Corollary 1.8 implies that Aut(M/bdduλ(aE)) ≥ Aut(M/ bddu|a|+|T |(aE)) for all

λ, so (3) implies (2).
To see that (2) implies (1), note that [bF ]≡L

aE
∈ bdduλ(aE) for some sufficiently

large λ (because there are a bounded number of Lascar strong types over aE).
Therefore if bF ≡bddu

λ(aE) cF , we must have [bF ]≡L
aE

= [cF ]≡L
aE

or, in other words,

bF ≡L
aE

cF . □

2. Bounded ultraimaginary independence

Definition 2.1. Given sets of ultraimaginaries A, B, and C, we write B |⌣
bu

A
C to

mean that bddu(AB) ∩ bddu(AC) = bddu(A).

Recall that bddu is a closure operator (i.e., if cG ∈ bddu(bF ) and bF ∈ bddu(aE),
then cG ∈ bddu(aE)). We will ultimately show (in Proposition 2.3) that the fol-

lowing are equivalent: bF |⌣
bu

aE
cG, bdd

u
κ(aEbF ) ∩ bdduκ(aEcG) = bdduκ(aE) for all

κ, and bdduκ(aEbF ) ∩ bdduκ(aEcG) = bdduκ(aE) for κ = |T | + |abc|. |⌣
bu

satisfies

some of the familiar properties of |⌣
a
.

Proposition 2.2. Fix ultraimaginaries aE, bF , cG, and eI .

• (Invariance) If aEbF cG ≡ a′Eb
′
F c

′
G, then bF |⌣

bu

aE
cG if and only if b′F |⌣

bu

a′
E

c′G.
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• (Symmetry) bF |⌣
bu

aE
cG if and only if cG |⌣

bu

aE
bF .

• (Monotonicity) If bF cG |⌣
bu

aE
dHeI , then bF |⌣

bu

aE
dH .

• (Transitivity) If bF |⌣
bu

aE
cG and dH |⌣

bu

aEbF
cG, then bF dH |⌣

bu

aE
cG.

• (Normality) If bF |⌣
bu

aE
cG, then aEbF |⌣

bu

aE
aEcG.

• (Anti-reflexivity) If bF |⌣
bu

aE
bF , then bF ∈ bddu(aE).

Proof. Everything except transitivity is immediate. The argument for transitivity

is the same as the argument for transitivity of |⌣
a
: Assume that bF |⌣

bu

aE
cG and

dH |⌣
bu

aEbF
cG. Let eI be an element of bddu(aEbF dH)∩ bddu(aEcG). This implies

that it is an element of bddu(aEbF dH) ∩ bddu(aEbF cG), so by assumption it is
an element of bddu(aEbF ). But this means that it’s in both bddu(aEbF ) and
bddu(aEcG), so, by assumption again, it is an element of bddu(aE). □

Part of the goal of this paper is to prove full existence and therefore also extension

for |⌣
bu

(although only over hyperimaginary bases).

• (Full existence over hyperimaginaries) For any set of hyperimaginaries A

and ultraimaginaries bE and cF , there is c′F ≡A cF such that bE |⌣
bu

A
c′F .

• (Extension over hyperimaginaries) For any set of hyperimaginaries A and

ultraimaginaries bE , cF , and dG, if bE |⌣
bu

A
cF , then there is b′E ≡AcF bE

such that b′E |⌣
bu

A
cF dG.

A fairly general argument will allow us to upgrade ≡A to ≡L
A in the above two

conditions, which we establish in Theorem 3.6 and Corollary 3.8.
Finite character fails very badly, of course: As considered in [13, Ex. 2.8], if E is

the equivalence relation on ω-tuples of equality on cofinitely many indices, then for

some sequences (ai)i<ω, we will have a<n |⌣
bu
[a<ω]E for all n, yet a<ω ̸ |⌣

bu
[a<ω]E .

Given the existence of higher and higher cardinality generalizations of the previous
example (e.g., equality on co-countably many indices on ω1-tuples), local character
seems unlikely except possibly in the presence of large cardinals. We do have some
control over the relevant cardinalities, however.

Proposition 2.3. For any aE, bF , and cG, bF |⌣
bu

aE
cG if and only if bdduλ(aEbF )∩

bdduλ(aEcG) = bdduλ(aE), where λ = |ab|+ |T |.

Proof. Let λ = |ab|+ |T |. Clearly we have that if bF |⌣
bu

aE
cG, then bdduλ(aEbF ) ∩

bdduλ(aEcG) = bdduλ(aE).

Conversely, assume that bF ̸ |⌣
bu

aE
cG. There is some dH ∈ (bddu(aEbF ) ∩

bddu(aEcG)) \ bddu(aE). By Corollary 1.8, there is eI of arity at most λ such that
dH and eI are interdefinable. This means that eI ∈ (bdduλ(aEbF ) ∩ bdduλ(aEcG)) \
bdduλ(aE). Therefore bdduλ(aEbF ) ∩ bdduλ(aEcG) ̸= bdduλ(aE).

□

The following characterization of |⌣
bu

(and the manner of proof) is essentially
due to Wagner [13].

Proposition 2.4. For any ultraimaginaries aE, bF , and cG, the following are
equivalent.

(1) bF |⌣
bu

aE
cG.
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(2) For any b′F ≡L
aE

bF , there are b0, c0, b1, c1, . . . , cn−1, bn such that b0 = b,

c0 = c, bn = b′, and for each i < n, biF ≡L
aEciG

bi+1
F and ciG ≡L

aEbi+1
F

ci+1
G if

i < n− 1.
(3) ⟨Autf(M/aEbF ) ∪Autf(M/aEcG)⟩ = Autf(M/aE).

Proof. Let H = ⟨Autf(M/aEbF ) ∪Autf(M/aEcG)⟩.
¬(3)⇒¬(1). Assume thatH ̸= Autf(M/aE), which implies thatH < Autf(M/aE)

= Autf(M/aE)f . By Proposition 1.12, we have that [[H]] /∈ bddu[[Autf(M/aE)]] =
bddu(aE). But since Autf(M/aEbF ) = Autf(M/aEbF )f ≤ H and Autf(M/aEcG) =
Autf(M/aEcG)f ≤ H, we have that [[H]] ∈ bddu(aEbF ) ∩ bddu(aEcG) again by
Proposition 1.12.

(3)⇒(1). Suppose H = Autf(M/aE). Fix an ultraimaginary dI ∈ bddu(aEbF )∩
bddu(aEcG). By Proposition 1.12, we have thatH ≤ Autf(M/aEdI) ≤ Autf(M/aE),
which implies that Autf(M/aEdI) = H. Therefore by Proposition 1.12, dI ∈
bddu(aE). Since we can do this for any such ultraimaginary, we have that bF |⌣

bu

aE
cG.

(1)⇒(2). Let b∗F∗ = [[Autf(M/aEbF )]] and c∗G∗ = [[Autf(M/aEcG)]]. Note
that bddu(aEbF ) = dclu(b∗F∗) and bddu(aEcG) = dclu(c∗G∗) (by Definition 1.9 and
Proposition 1.12). In particular, we have that dclu(b∗F∗) ∩ dclu(c∗G∗) = bddu(aE).
Fix b′F ≡L

aE
bF . By passing to a different representative of the F -equivalence class

b′F , we may assume that b′ ≡L
aE

b. Fix c′ such that bc ≡L
aE

b′c′. By Proposition 1.13,
we have that b′c′ ≡bddu

λ(aE) bc for all λ, so b′c′ ≡dcluλ(b
∗
F∗ )∩dcluλ(c

∗
G∗ ) bc for all λ.

Therefore, by Proposition 1.10, we can find a sequence (b∗ic∗ibici)i≤n such that
b∗0 = b∗, c∗0 = c∗, b0c0 = bc, bncn = b′c′, and for each i < n,

• if i is even, b∗i = b∗i+1 and c∗ibici ≡b∗i c
∗i+1bi+1ci+1 and

• if i is odd, c∗i = c∗i+1 and b∗ibici ≡c∗i b
∗i+1bi+1ci+1.

This implies, by induction, that bici ≡L
aEbiF

bi+1ci+1 and biF = bi+1
F for each even i

and bici ≡L
aEciG

bi+1ci+1 and ciG = ci+1
G for each odd i, so b0c1b2c3 . . . cn−1bn is the

sequence required by the proposition (after reindexing).
(2)⇒(1). Assume (2), but also assume for the sake of contradiction that (1) fails.

Let dH be an element of (bddu(aEbF ) ∩ bddu(aEcG)) \ bddu(aE). Since dH is not
bounded over aE , there must be some d′H ≡L

aE
dH such that d′H /∈ bddu(aEbE) ∩

bddu(aEcG). Find b′F such that bF dH ≡L
aE

b′F d
′
H . Let b0, c0, b1, c1 . . . , cn−1, bn be

as in (2), with bn = b′. Find d
1/2, d1, d

3/2, d2, . . . , dn−
1/2, dn such that d

1/2 = d and
for each i < n,

• biF d
i+1/2
H ≡L

aEciG
bi+1
F di+1 and

• ciGd
i+1
H ≡L

aEbi+1
F

ci+1
G d

i+3/2
H if i < n− 1.

We now have that b′F d
′
H ≡L

aE
bF dH ≡L

aE
b′F d

n
H , so in particular, d′H ≡L

aEb′F
dnH . For

some i < n, consider eI ∈ bddu(aEb
i
F ) ∩ bddu(aEc

i
G). Since eI ∈ bddu(aEc

i
G) and

since biF d
i+1/2
H ≡bddu

λ(aEciG) b
i+1
F di+1 for all λ (by Proposition 1.13), we must have

that biF d
i+1/2
H ≡aEeI bi+1

F di+1 and so eI ∈ bddu(aEb
i+1
F ) as well. By the reverse

argument and since we can do this for any such ultraimaginary, we get that

bddu(aEb
i
F ) ∩ bddu(aEc

i
G) = bddu(aEb

i+1
F ) ∩ bddu(aEc

i
G).

Likewise, for any i < n− 1, we get

bddu(aEb
i+1
F ) ∩ bddu(aEc

i
G) = bddu(aEb

i+1
F ) ∩ bddu(aEc

i+1
G ).
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Therefore dnH ∈ bddu(aEb
n
F ) ∩ bddu(aEc

n−1
G ), so since dnH ≡L

aEbnF
d′H and so

dnH ≡bddu
λ(aEbnF ) d′H for every λ (by Proposition 1.13), we must also have d′H ∈

bddu(aEb
n
F )∩bdd

u(aEc
n−1
G ) = bddu(aEbF )∩bddu(aEcG), which is a contradiction.

□

3. Full existence

We will use the tree bookkeeping machinery from [6], with some minor extensions
(the notation T ∗

α and Fα).

Definition 3.1. For any ordinal α, Ls,α is the language

{⊴,∧, <lex, P0, P1, . . . , Pβ(β < α), . . . },
with ⊴ and <lex binary relations, ∧ a binary function, and each Pβ a unary relation.

For any ordinal α, we write T ∗
α for the set of functions f with codomain ω and

finite support such that dom(f) is an end segment of α. (For the sake of some
minor edge cases, we will regard the empty functions in various T ∗

α ’s as distinct
objects.) We write Tα for the set of functions f ∈ T ∗

α with dom(f) = [β, α) for a
non-limit ordinal β. We write Fα+1 (for forest) for Tα+1 \ {∅}.

We interpret T ∗
α and Tα as Ls,α-structures by

• f ⊴ g if and only if f ⊆ g;
• f ∧ g = f↾[β, α) = g↾[β, α), where β = min{γ : f↾[γ, α) = g↾[γ, α)} (with
the understanding that min∅ = α);

• f <lex g if and only if either f ◁ g or f and g are ⊴-incomparable, dom(f ∧
g) = [γ, α), and f(γ) < g(γ); and

• Pβ(f) holds if and only if dom(f) = [β, α).

We write ⟨i⟩α for the function {(α, i)} (which is an element of T ∗
α+1). Given

i < ω and f ∈ T ∗
α with dom(f) = [β + 1, α), we write f ⌢ i to mean the function

f ∪ {(β, i)} (which is an element of T ∗
α ). Given i < ω and f ∈ T ∗

α , we write i ⌢ f
to mean the function {(α, i)} ∪ f (which is an element of T ∗

α+1).
9

For α < β, we define the canonical inclusion map ιαβ : Tα → Tβ by ιαβ(f) =
f ∪ {(γ, 0) : γ ∈ β \ α}. (Note that ια,α+1(f) = 0 ⌢ f .)

For β ≤ α, we write ζαβ for the function whose domain is [β, α) with the property

that ζαβ (γ) = 0 for all γ ∈ [β, α). (Note that ζαα is Tα’s copy of the empty function.)

Given a family (bf )f∈X , we may refer to it briefly as b∈X .

Definition 3.2. GivenX ⊆ T ∗
α , we say that a family (bf )f∈X is s-indiscernible over

A if for any tuples f0 . . . fn−1 and g0 . . . gn−1 in X with f0 . . . fn−1 ≡qf g0 . . . gn−1,
bf0 . . . bfn−1 ≡A bg0 . . . bgn−1 , where quantifier-free type is in the language Ls,α.
(Note that this does not entail that bf ’s on different levels are tuples of the same
sort.)

Given f ∈ Tα, we write b⊵f to refer to some fixed enumeration of the set {bg :
g ∈ Tα, f ⊴ g}. In particular, we choose this enumeration in a uniform way so
that if (bf )f∈Tα

is s-indiscernible over A, then for any f with domain [β + 1, α),
the sequence (b⊵f⌢i)i<ω is A-indiscernible. When f is an element of T ∗

α , we will
also write b⊵f for some fixed enumeration of the set {bg : g ∈ Tα, f ⊆ g}. One

9Note that this notation is not ambiguous when f is an empty function, as we are regarding
the empty functions in different T ∗

α ’s as distinct objects.
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particular example of this will be sequences of the form (b⊵ζα
β+1⌢i)i<ω, where β is

a limit ordinal. This is essentially the only situation in which we need to consider
T ∗
α .
Note that for a limit ordinal α, (bf )f∈Tα is s-indiscernible over A if and only if

(bf )f∈ιβ,α(Tβ) is s-indiscernible over A for every β < α.
We will also need the following fact.

Fact 3.3 (Modeling property for s-indiscernibles [8, Thm. 4.3]). Let X be Tα or
Fα+1. For any (bf )f∈X and any set A of hyperimaginaries, there is a family of
tuples (cf )f∈X that is s-indiscernible over A and locally based on b∈X (i.e., for any
finite tuple f0 . . . fn−1 from X and any neighborhood U of tp(cf0 . . . cfn−1/A) (in the

appropriate type space), there is a tuple g0 . . . gn−1 from X such that f0 . . . fn−1 ≡qf

g0 . . . gn−1 and tp(bg0 . . . bgn−1
/A) ∈ U).

Note that while Fact 3.3 is normally formulated for discrete logic, the correspond-
ing statement in continuous logic follows easily from a very soft general argument:
Given a metric structure M and a tree (bf )f∈X of elements of M , find α large
enough that M , Th(M), and b∈X are elements of Vα and apply [8, Thm. 4.3] to Vα

as a discrete structure and get some A-s-indiscernible family (c∗f )f∈X of elements of
an elementary extension V ∗

α ⪰ Vα. These elements live inside a structure M∗ ∈ V ∗
α

that is internally a model of Th(M). By taking the standard parts of each real-
valued predicate in M∗ and then completing with regards to the metric, we get a
metric structure N that is an elementary extension of M . For each f ∈ X, let cf be
the image in N of c∗f under the canonical map from M∗ to N . It is straightforward

to check that (cf )f∈X is the required A-s-indiscernible family.

Before proving full existence for |⌣
bu
, we will need a lemma.

Lemma 3.4. Fix α and γ > α. Let (ef )f∈Fγ+1 be an s-indiscernible family of real
tuples over a set A of hyperimaginary parameters. Let λ = |Ae⊵ζγ

α
|+ |T |. Suppose

that there is an ultraimaginary cF such that cF ∈ bdduλ(Ae⊵ζγ+1
α

)∩bdduλ(Ae⊵1⌢ζγ
α
).

Then there is a model M with AcF ⊆ dclu(M) and |M | ≤ λ such that (ef )f∈Fγ+1

is s-indiscernible over M .

Proof. By Fact 3.3, we can find a set of real parameters B such that |B| ≤ |A|+ |T |,
A ⊆ bddheq(B), and (ef )f∈Fγ+1

is s-indiscernible over B.
Let T ′ be a Skolemization of T with |T ′| = |T |. Let M′ be the monster model

of T ′, which we may think of as an expansion of M. By Fact 3.3, we can find
(b′f )f∈Fγ+1 locally based on (ef )f∈Fγ+1 which is s-indiscernible over B (in T ′). By

considering an automorphism of M (in T ), we may assume that (b′f )f∈Fγ+1
actually

is (ef )f∈Fγ+1 , so that (ef )f∈Fγ+1 is s-indiscernible over B (in T ′).
Find an automorphism σ ∈ Aut(M′/B) satisfying that for every i < ω, σ ·

e⊵⟨i+1⟩γ+1
= e⊵⟨i⟩γ+1

. Let M be the Skolem hull of B ∪ σ · e⊵ζγ+1
α

. Note that

(ef )f∈Fγ+1
is s-indiscernible over M (and therefore the same is true in T ). Fur-

thermore, note that |M | ≤ λ.
Let Mi be the Skolem hull of Be⊵i⌢ζγ

α
for both i ∈ {0, 1}. Note that cF ∈

bdduλ(M1) and |M1| ≤ λ. Pass back to the theory T . Note that M , M0, and M1

are still models of T . By Corollary 1.8, there is an invariant equivalence relation G
(in T ) such that cF and [M1]G are interdefinable. Therefore we have that [M1]G ∈
bdduλ(Ae⊵ζγ+1

α
) ⊆ bddu(M0) = dclu(M0). Find an automorphism τ ∈ Aut(M/M1)
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such that τ(M0) = M (which exists by indiscernibility). τ witnesses that [M1]G ∈
dclu(M) and therefore cF ∈ dclu(M), so M is the required model. □

Now we are ready to prove full existence for |⌣
bu
, but we will take the oppor-

tunity to prove a certain technical strengthening which we will need later in the

construction of |⌣
bu
-Morley trees.

Lemma 3.5. If (bf )f∈Tα
is a tree of real elements that is s-indiscernible over a set

of hyperimaginaries A, then there is a γ > α and a tree (ef )f∈Tγ+1
such that

• e∈Tγ+1
is s-indiscernible over A,

• for each f ∈ Tα, bf = eια,γ+1(f), and

• e⊵ζγ+1
α

|⌣
bu

A
e⊵1⌢ζγ

α
.

(Note that e⊵ζγ+1
α

is the original tree.)

Proof. If b∈Tα
∈ acl(A), then the statement is trivial, so assume that b∈Tα

/∈ acl(A).

Fix λ = |Ab∈Tα |+ |T |. By Proposition 2.3, we have that that b∈Tα |⌣
bu

A
c if and

only if bdduλ(Ab∈Tα) ∩ bdduλ(Ac) = bdduλ(A) for any c. Let µ = |bdduλ(Ab∈Tα) \
bdduλ(A)|+.

We will build a family (ef : f ∈ ιγ+1,µ(Tγ+1)) inductively, where γ is some
successor ordinal less than µ. By an abuse of notation, we will systematically
conflate the sets ια,µ(Tα) and Tα (and likewise for ια,µ(Fα+1) and Fα+1) for all
α < µ. Note that in general this will mean that e⊵ζµ

β
is the same thing as e∈Tβ

.

Let ef = bf for all f ∈ Tα. Since b∈Tα
/∈ acl(A), we can find a family (df )f∈Fα+1

extending e∈Tα
such that (d⊵ζµ

α+1⌢i)i<ω is a non-constant A-indiscernible sequence.

By Fact 3.3, we can define ef for all f ∈ Fα+1 in such a way that the family e∈Fα+1

is locally based on d∈Fα+1
. In particular, (e⊵ζµ

α+1⌢i)i<ω will be a non-constant

A-indiscernible sequence.
At successor stage β + 1 ≥ α, assume that we have defined ef for all f ∈ Fβ+1

and that the family (ef )f∈Fβ+1
is s-indiscernible over A. If there is no dE ∈

bdduλ(Ab∈Tα
) \ bdduλ(A) such that the family (ef )f∈Fβ+1

is s-indiscernible over Ad,
let eζµ

β+1
= ∅ and γ = β and halt the construction. Otherwise, let eζµ

β+1
= d.

For later reference, let Eβ+1 be E. Note that the family e∈Tβ+1
is s-indiscernible

over A. Since dE /∈ bdduλ(A), we can find, by Proposition 1.4, a sequence (σi)i<ω of
elements of Aut(M/A) such that (σi ·d)i<ω is an A-indiscernible sequence satisfying
(σi · d)/Eβ+1(σj · d) for any i < j < ω. Now choose (ef )f∈Fβ+2

in such a way that
e∈Fβ+2

extends what was already defined, is s-indiscernible over A, and is locally
based on the family (cf )f∈Fβ+2

defined by ci⌢f = σi · ef for all f ∈ Tβ+1 (which is
possible by Fact 3.3). In particular, note that for any i < j < ω, we still have that
(eζµ

β+2⌢i, eζµ
β+2⌢j) ≡A (σ0 · d, σ1 · d) and so, in particular, eζµ

β+2⌢i /Eβ+1eζµ
β+2⌢j .

At limit stage β, we have constructed the family (ef )f∈Tβ
. Note that this family

is automatically s-indiscernible over A. Extend it to a family e∈Fβ+1
that is s-

indiscernible over A. (This is always possible by Fact 3.3.)

Claim. For any β < δ < µ, if Eβ+1 = Eδ+1, then eζµ
β+1

/Eβ+1eζµ
δ+1

.

Proof of claim. The sequence (eζµ
β+2⌢i)i<ω is eζµ

δ+1
-indiscernible. Since

eζµ
β+2⌢0 /Eβ+1eζµ

β+2⌢1,

it must be the case that eζµ
δ+1

/Eβ+1eζµ
β+2⌢i for all i < ω. □claim
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Let g be the partial function taking β to [eζµ
β+1

]Eβ+1
. By the claim, this is an

injection into bdduλ(Ab∈Tα
) \ bdduλ(A). By the choice of µ, g’s domain cannot be

cofinal in µ, so the construction must have halted at some γ < µ.
Extend e∈Tγ

to e∈Fγ+1
in such a way that the resulting family is s-indiscernible

over A. Set eζµ
γ+1

= ∅.

Claim. For any cF ∈ bdduλ(Ae⊵ζµ
α
) \ bdduλ(A), cF /∈ bdduλ(Ae⊵1⌢ζγ

α
).

Proof of claim. Assume that there is some cF ∈ (bdduλ(Ae⊵ζµ
α
)∩bdduλ(Ae⊵1⌢ζγ

α
))\

bdduλ(A). By Lemma 3.4, we can find a model M with AcF ⊆ dclu(M) and |M | ≤ λ
such that e∈Fγ+1

is s-indiscernible over M . By Corollary 1.8, there is an invariant
equivalence relation G such that cF and [M ]G are interdefinable. But this means
that we could have chosen [M ]G to be dE at stage γ, contradicting the fact that
the construction halted. Therefore no such cF can exist. □claim

So, by the claim, we have that bdduλ(Ae⊵ζµ
α
) ∩ bdduλ(Ae⊵1⌢ζγ

α
) = bdduλ(A).

Therefore, by the choice of λ, e⊵ζµ
α

|⌣
bu

A
e⊵1⌢ζγ

α
, as required. □

Theorem 3.6 (Full existence). For any set of hyperimaginaries A and real tuples

b and c, there is b′ ≡L
A b such that b′ |⌣

bu

A
c.

Proof. It is sufficient to show this in the special case that b = c. Specifically, given

d and e, if we can find d′e′ ≡A de such that d′e′ |⌣
bu

A
de, then we have d′ |⌣

bu

A
e by

monotonicity. So fix a set of hyperimaginaries A and a real tuple b. Let B be a set
containing realizations of all Lascar strong types extending tp(b/A). We can now
apply Lemma 3.5 to the family (Bf )f∈T0

with B∅ = B to get a family (Ef )f∈Tγ+1

such that Eζγ+1
0

= B for some f ∈ Tγ+1, B ≡A Bf , and B |⌣
bu

A
Bf . Let σ be an

automorphism fixing A taking Bf to B. Let B′ = σ ·B. B′ still contains realizations
of all Lascar strong types extending tp(b/A), so we can find b′ ∈ B′ with b′ ≡L

A b,
which is the required element. □

Corollary 3.7. For any set of hyperimaginaries A and any ultraimaginaries bE
and cF , there is b′E ≡L

A bE such that b′E |⌣
bu

A
cF .

Proof. Apply Theorem 3.6 to b and c to get b′ ≡L
A b such that b′ |⌣

bu

A
c. We then

have that bddu(b′) |⌣
bu

A
bddu(c), so by monotonicity, b′E |⌣

bu

A
cF . □

Corollary 3.8 (Extension). For any set of hyperimaginaries A and any ultra-

imaginaries bE, cF , and dG, if bE |⌣
bu

A
cF , then there is b′E ≡L

AcF
bE such that

b′E |⌣
bu

A
cF dG.

Proof. By Corollary 3.7, we can find b′E ≡L
AcF

b such that b′E |⌣
bu

AcF
dG. By sym-

metry and transitivity, we have that b′E |⌣
bu

A
cF dG. □

Compactness is very essential in the proof of Fact 3.3 and therefore also Theo-
rem 3.6, which raises the following question.

Question 3.9. Does Theorem 3.6 hold when A is a set of ultraimaginaries?
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4. Total |⌣
bu
-Morley sequences

Definition 4.1. A |⌣
bu
-Morley sequence over A is an A-indiscernible sequence

(bi)i<ω such that bi |⌣
bu

A
b<i for each i < ω.

A weakly total |⌣
bu
-Morley sequence over A is an A-indiscernible sequence (bi)i<ω

such that for any finite I and any J (of any order type), if I + J ≡EM
A b<ω, then

I |⌣
bu

A
J .10

A total |⌣
bu
-Morley sequence over A is an A-indiscernible sequence (bi)i<ω such

that for any I and J (of any order type), if I + J ≡EM
A b<ω, then I |⌣

bu

A
J .

We could write down stronger and weaker forms of the |⌣
bu
-Morley condition,

but we are really only interested in total |⌣
bu
-Morley sequences, as they seem to be

a fairly robust class (see Theorem 4.8). Weakly total |⌣
bu
-Morley sequences seem

to be the best we can get without large cardinals, however, which does raise the
following question.

Question 4.2. Is every weakly total |⌣
bu
-Morley sequence a total |⌣

bu
-Morley se-

quence?

One immediate property of total |⌣
bu
-Morley sequences is that they act as uni-

versal witnesses of the relation ≡L
A in a strong way.

Proposition 4.3. For any A and b, if there is a total |⌣
bu
-Morley sequence (bi)i<ω

over A with b0 = b, then for any b′, b′ ≡L
A b if and only if there are I0, J0, I1, . . . ,

Jn−1, In such that b ∈ I0, b
′ ∈ In, and, for each i < n, Ii + Ji and Ii+1 + Ji are

both A-indiscernible and have the same EM-type as b<ω.

Proof. Let I = (bi)i<ω. We only need to prove that if b′ ≡L
A b, then the required

configuration exists (as the required configuration is clearly sufficient to witness
that b′ ≡L

A b). Choose I ′ so that bI ≡L
A b′I ′. Extend I to an A-indiscernible

sequence I + J with I ≡A J . By assumption I |⌣
bu

A
J , so by Proposition 2.4, there

are I0, J0, I1, J1, . . . , Jn−1, In such that I0 = I, J0 = J , In = I ′, and for each i < n,
Ii ≡L

AJi
Ii+1 and Ji ≡L

AIi+1
Ji+1 if i < n. Since I0 + J0 is A-indiscernible, we can

show by induction that Ii + Ji and Ii+1 + Ji are both A-indiscernible and have the
same EM-type as I0 = b<ω. □

A similar statement is true for weakly total |⌣
bu
-Morley sequences, which we will

state in Corollary 4.18 after we have shown that weakly total |⌣
bu
-Morley sequences

always exist without set-theoretic hypotheses.

4.1. Characterization of total |⌣
bu
-Morley sequences.

Definition 4.4. For any set of parameters A, we write ≈A for the transitive closure
of the relation I ∼A J that holds if and only if I and J are both infinite A-
indiscernible sequences (of real or hyperimaginary elements) and either I + J or
J + I is an A-indiscernible sequence.

10Note that if we modified this definition to allow I to be any order type and require that
J be finite, the resulting sequences would be precisely the order-reversals of the weakly total

|⌣
bu-Morley sequences as we have defined the term here (by symmetry of |⌣

bu).
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By an abuse of notation, we write [I]≈A
for the ultraimaginary [AI]E , where E

is the equivalence relation on tuples of the same length as AI such that E(AI,BJ)
holds if and only if A = B in our fixed enumeration and I ≈A J .

Note that we do not in general require that I and J have the same order type.
Also note that ≈A is reflexive: For any infinite A-indiscernible sequence I, we can
find an infinite sequence J such that I+J is also A-indiscernible. Then I ∼A J ∼A

I, so I ≈A I.
We will also need an appropriate Lascar strong type generalization of Ehrenfeucht-

Mostowski type.

Definition 4.5. Given two infinite A-indiscernible sequences I and J , we say that
I and J have the same Lascar-Ehrenfeucht-Mostowski type (or LEM-type) over A,
written I ≡LEM

A J , if there is some J ′ ≡L
A J such that I + J ′ is A-indiscernible.

To see that the name is justified, note that two infinite A-indiscernible sequences
I and J have the same Ehrenfeucht-Mostowski type over A if and only if there is a
J ′ ≡A J such that I + J ′ is A-indiscernible.

Lemma 4.6. For any infinite order types O and O′, I ≈A J if and only if there
are K0, L0,K1, . . . , Ln−1,Kn such that

• K0 = I and Kn = J ,
• for 0 < i < n, Ki is a sequence of order type O,
• for i < n, Li is a sequence of order type O′, and
• for i < n, Ki + Li and Ki+1 + Li are A-indiscernible.

Proof. The ⇐ direction is obvious.
For the ⇒ direction, we will proceed by induction. First assume that I ∼A J .

If I + J is A-indiscernible, then find L of order type O′ such that I + J + L is
A-indiscernible. We then have that I +L and J +L are A-indiscernible. If J + I is
A-indiscernible, then find L of order type O′ such that J + I+L is A-indiscernible.
We then have that I + L and J + L are A-indiscernible.

Now assume that we know the statement holds for any I and J such that there
is a sequence I ′0, . . . , I

′
n with I ′0 = I, I ′n = J , and I ′i ∼A I ′i+1 for each i < n. Now

assume that there is a sequence I ′0, . . . , I
′
n+1 with I ′0 = I, I ′n+1 = J , and I ′i ∼A I ′i+1

for each i ≤ n. Apply the induction hypothesis to get K0, L0,K1, . . . , Lm−1,Km

satisfying the properties in the statement of the lemma with K0 = I and Km = I ′n.
Now since I ′n ∼A I ′n+1 = J , we can apply the n = 1 case to get Lm such that
I ′n + Lm and I ′n+1 + Lm are both A-indiscernible. By compactness, we can find
K∗

m of order type O such that K∗
m +Lm and K∗

m +Lm−1 are both A-indiscernible.
We then have that K0, L0,K1, L1, . . . ,Km−1, Lm−1,K

∗
m, Lm,Km+1 is the require

sequence, where Km+1 = J . □

Proposition 4.7. Fix a set of hyperimaginary parameters A.

(1) ≡LEM
A is an equivalence relation on the class of infinite A-indiscernible se-

quences.
(2) If I and J have the same order type, then I ≡L

A J if and only if I ≡LEM
A J .

(3) If I ≡LEM
A J , then I ≡EM

A J .
(4) If I ≈A J , then I ≡LEM

A J .
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Proof. Recall the following fact: If I and J have the same order type and I + J is
A-indiscernible, then I ≡L

A J .11

(1). First, to see that≡LEM
A is reflexive, note that if I is an infiniteA-indiscernible

sequence, then any infinite A-indiscernible extension I+I ′ will witness that I ≡LEM
A

I. To see that ≡LEM
A is symmetric, assume that I ≡LEM

A J , and let J ′ be as in the
definition of ≡LEM. Find I ′ such that IJ ′ ≡L

A I ′J . Then extend I ′+J to I ′+J+I ′′,
where I ′′ has the same order type as I. We then have that I ′′ ≡L

A I ′ ≡L
A I, so

J ≡LEM
A I. To see that ≡LEM

A is transitive, assume that I ≡LEM
A J and J ≡LEM

A K.
Let this be witnessed by J ′ and K ′ such that I+J ′ and J+K ′ are A-indiscernible.
Find K ′′ with the same order type as K such that I + J ′ +K ′′ is A-indiscernible.
Then find K∗ such that J ′K ′′ ≡L

A JK∗. Note that both J + K∗ and J + K ′ are
A-indiscernible. By compactness, we can find K∗∗ of the same order type as K
such that K∗∗ + J +K∗ and K∗∗ + J +K ′ are both A-indiscernible. By the above
fact, we then have that K∗ ≡L

A K∗∗ ≡L
A K ′. Finally, K ′ ≡L

A K by assumption, so
we have that K ′′ ≡L

A K and therefore that I ≡LEM
A K.

(2) is immediate from the fact. (3) is obvious.
For (4), it is sufficient to show that I ∼A J ⇒ I ≡LEM

A J . This follows immedi-
ately from the fact that I ≡L

A I and J ≡L
A J . □

Now we will see that total |⌣
bu
-Morley sequences over A are precisely those

which are ‘as generic as possible’ in terms of ≈A (i.e., their ≡LEM
A -equivalence class

decomposes into a single ≈A-equivalence class).

Theorem 4.8. For any A-indiscernible sequence (bi)i<ω (with A a set of hyper-
imaginary parameters), the following are equivalent.

(1) b<ω is a total |⌣
bu
-Morley sequence over A.

(2) There exists a pair of infinite sequences I and J (of any, possibly distinct

order types) such that I + J ≡EM
A b<ω and I |⌣

bu

A
J .

(3) For any K, K ≈A b<ω if and only if K ≡LEM
A b<ω.

(4) [b<ω]≈A
∈ bddu(A).

Proof. (1)⇒(2). This is immediate from the definition.

(2)⇒(3). First note that if K ≈A b<ω, then K ≡LEM
A b<ω by Proposition 4.7. Let

I and J be as in the statement of (2). By compactness, we may find I ′ ≡A b<ω

such that I ′ + I + J is A-indiscernible. By applying an automorphism fixing A, we
may assume that b<ω + I+J is A-indiscernible. Fix K such that K ≡LEM

A b<ω. By
compactness, we can find a K ′ ≡A K such that b<ω + I+K ′+J is A-indiscernible.
We have that K ≡LEM

A b<ω ∼A K ′ and therefore K ≡L
A K ′ by Proposition 4.7. Let

aE ∈ bddu(AI) be an ultraimaginary satisfying dclu(aE) = bddu(AI). Likewise,
let bF ∈ bddu(AJ) be an ultraimaginary satisfying dclu(bF ) = bddu(AJ).12 Since
dclu(aF ) ∩ dclu(bF ) = bdd(A), we have that K ≡dcluλ(IaF )∩dcluλ(JbF ) K ′ for all λ.

11To see this, assume that I and J have the same order type and I + J is A-indiscernible
for some set of hyperimaginary parameters. Let M be a model with A ⊆ bddheq(M). We can

find an M -indiscernible sequence I′ + J ′ finitely based on I + J . In particular, this will have
I′ + J ′ ≡A I + J . Therefore we can find a model M ′ ≡A M such that I + J is M ′-indiscernible.
We then have that I ≡M′ J , whereby I ≡L

A J .
12We can take aE to be [[Autf(M/AI)]] and bF to be [[Autf(M/AJ)]] by Definition 1.9 and

Proposition 1.12.
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Therefore, by Proposition 1.10, we can find a sequence (IiaiJ ibiKi)i≤n satisfying
that I0a0 = Ia, J0b0 = Jb, K0 = K ′, Kn = K, and for each i < n,

• if i is even, then Iiai = Ii+1ai+1 and J ibiKi ≡A J i+1bi+1Ki+1 and
• if i is odd, then J ibi = J i+1bi+1 and IiaiKi ≡A Ii+1ai+1Ki+1.

By induction, we have that Ii + Ki + J i is A-indiscernible for each i ≤ n. We
therefore have that

K ′ = K0 ∼A I0 ∼A J1 ∼A I2 ∼A J3 ∼A · · · ∼A L ∼A Kn = K,

where L is either In or Jn. Therefore K ′ ≈A K.

(3)⇒(1). Assume that for any K ≡LEM
A b<ω, K ≈A b<ω. Let I and J be infinite

sequences satisfying I + J ≡EM
A b<ω. By applying an automorphism fixing A to

I+J , we may assume that b<ω+I+J is A-indiscernible. Fix some I ′ ≡L
A I. We have

that I ′ ≡LEM
A b<ω, which by assumption implies that I ′ ≈A b<ω. Since b<ω ∼A I,

we have that I ≈A I ′. By Lemma 4.6, we can find K0, L0,K1, L1, . . . , Ln−1,Kn

such that K0 = I, Kn = I ′, L0 has the same order type as J , Ki has the same
order type as I for each i ≤ n, Li has the same order type as J for each i < n,
and Ki + Li and Ki+1 + Li are A-indiscernible for each i < n. Let K−1 = I and
L−1 = J . We now have that for each non-negative i < n, Ki−1 ≡L

ALi−1
Ki and

Li−1 ≡L
AKi

Li.
13 Therefore K−1, L−1,K0, L0, . . . , Ln−1,Kn is precisely the kind

of sequence needed to apply Proposition 2.4 (with the indices shifted down by 1).

Since we can do this for any I ′ ≡L
A I, we have that I |⌣

bu

A
J .

(3)⇒(4). Let x be a tuple of variables in the same sorts as b<ω. There are at
most 2|Ab<ω|+|T | many Lascar strong types in x over A. (3) implies therefore that
there are at most 2|Ab<ω|+|T | many ≈A classes with representatives that realize
tp(b<ω/A). Therefore [c<ω]≈A

∈ bddu(A) for any c<ω ≡A b<ω and so a fortiori
[b<ω]≈A

∈ bddu(A).

(4)⇒(3). Let I ≡LEM
A b<ω. Find I ′ such that I ≡L

A I ′ and b<ω+I ′ is A-indiscernible.
Since [b<ω]≈A

∈ bddu(A), we must have, by Proposition 1.4, that there are at most
2|Ab<ω|+|T | conjugates of [b<ω]≈A

under Aut(M/A). For any I ′′ ≡A I ′, we can find
c<ω ≡A b<ω such that I ′′ ∼A c<ω. Therefore there are at most 2|Ab<ω|+|T | conju-
gates of [I ′]≈A

under Aut(M/A) as well, and so [I ′]≈A
∈ bddu(A) by Proposition 1.4

again. By Proposition 1.13, there must be an automorphism σ ∈ Aut(M/A, [I ′]≈A)
such that σ · I ′ = I. Therefore [I ′]≈A

= [I]≈A
and hence I ≈A b<ω. □

4.2. Building ((weakly) total) |⌣
bu
-Morley sequences. Given that |⌣

bu
sat-

isfies full existence, an immediate, familiar Erdős-Rado argument gives that |⌣
bu
-

Morley sequences exist, but in the end we will need a technical strengthening of
this result.

Proposition 4.9. If (bf )f∈Tα
is a family of real elements that is s-indiscernible

over a set of hyperimaginaries A, then there is a family (cf )f∈Fα+1
such that

• c∈Fα+1
is s-indiscernible over A,

• cια,α+1(f) = bf for each f ∈ Tα, and
• the sequence (c⊵⟨i⟩)i<ω is an |⌣

bu
-Morley sequence over A.

13For i = 0, we have that K−1 ≡L
AL−1

K0 trivially, since K−1 = I = K0.
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Proof. Let κ be sufficiently large to apply Erdős-Rado to a sequence of tuples of
the same length as b∈Tα over the set A.

Let γ(0) = α. Let c0f = bf for all f ∈ Tγ(0) = Tα. Let g0 = ∅ (as an element of

Tα).
At successor stage β + 1, assume we have (cβf )Tγ(β)

which is s-indiscernible over

A and which satisfies cβιγ(δ),γ(β)(f)
= cδf for all δ < β. By Lemma 3.5, we can build

a family (cβ+1
f )Tγ(β+1)

(for some successor ordinal γ(β + 1) > γ(β)) such that

• (cβ+1
f )f∈Tγ(β+1)

is s-indiscernible over A,

• for each f ∈ Tγ(β), cβf = cβ+1
ιγ(β),γ(β+1)(f)

, and

• cβ+1

⊵ζ
γ(β+1)

γ(β)

|⌣
bu

A
cβ+1

⊵1⌢ζ
γ(β+1)−1

γ(β)

.

Let gβ+1 ∈ T ∗
γ(β+1) be 1 ⌢ ζ

γ(β+1)−1
α . Note that gβ+1 ⊵ h. Also note that by

construction we have that

cβ+1
⊵gβ+1

|⌣
bu

A
{cβ+1

⊵ιγ(δ),γ(β+1)(gδ)
: δ ∈ (β + 1) \ lim(β + 1)},

since ιγ(δ),γ(β+1)(gδ) ⊵ ζ
γ(β+1)
γ(β) for all non-limit δ < β + 1.

At limit stage β, let γ(β) = supδ<β γ(δ) and let (cβf )f∈Tγ(β)
be the direct limit

of (cδf )f∈Tγ(δ)
for δ < β. Leave gβ undefined.

Stop once we have (cκf )f∈Tγ(κ)
. Consider the sequence (cκ⊵ιγ(β),γ(κ)(gβ)

)β∈κ\limκ.
14

By our choice of κ and a standard application of the Erdős-Rado theorem, we can
find a family (cf )f∈Fα+1 such that the sequence (c⊵⟨i⟩α)i<ω is A-indiscernible and

for every increasing tuple ı̄ < ω, there is β̄ ∈ κ\limκ such that c⊵⟨i0⟩α . . . c⊵⟨ik⟩α ≡A

cκ⊵ιγ(β0),γ(κ)(gβ0
) . . . c

κ
⊵ιγ(βk),γ(κ)(gβk

).

In particular, note that this implies that

c⊵⟨i⟩α |⌣
bu

A
{c⊵⟨j⟩α : j < i}

for every i < ω. Clearly by applying an automorphism, we may assume that
cια,α+1(f) = bf for each f ∈ Tα, so all we need to do is show that the family c∈Fα+1

is s-indiscernible over A.
Since the sequence (c⊵⟨i⟩α)i<ω is A-indiscernible, it is sufficient, by induction,

to show the following statement: For any sequence f̄0, f̄1, . . . , f̄k, . . . , f̄ℓ of tuples
of elements of Fα+1 satisfying f̄i ⊵ ⟨i⟩α for all i ≤ ℓ and any h̄ ⊵ ⟨k⟩α such that
f̄k and h̄ realize the same quantifier-free type, we have that cf̄k and ch̄ realize the
same type over Acf̄0 . . . cf̄k−1

cf̄k+1
. . . cf̄ℓ .

So let f̄0, . . . , f̄ℓ and h̄ be as in the statement. By construction, there are
β0, . . . , βℓ such that c⊵⟨i⟩α ≡A cκ⊵ιγ(βi),γ(κ)(gβi

) for each i ≤ ℓ. Let f̄ ′
0, . . . , f̄

′
ℓ, h̄

′

be the corresponding elements of Tγ(κ). (So, in particular, f̄ ′
i ⊵ gβi

for each i ≤ ℓ

and h̄′ ⊵ gβk
). We now have that f̄ ′

k and h̄′ realize the same quantifier-free type.
Therefore, by the s-indiscernible of cκ∈Tγ(κ)

, we have that cκ
f̄ ′
k

and cκ
h̄′ realize the

same type over Acκ
f̄ ′
0
. . . cκ

f̄ ′
k−1

cκ
f̄ ′
k+1

. . . cκ
f̄ ′
ℓ

. From this the required statement follows,

and we have that c∈Fα+1 is s-indiscernible over A. □

14We write limα for the set of limit ordinals in α.
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Corollary 4.10. For any set of hyperimaginaries A and any real tuple b, there is

an |⌣
bu
-Morley sequence (bi)i<ω over A with b0 = b.

Proof. Apply Proposition 4.9 to the tree (bf )f∈T0
defined by b∅ = b.15 □

The order type ω is essential, however; Erdős-Rado only guarantees the existence
of sequences that satisfy the relevant condition on finite tuples. Fortunately, this
is more than sufficient for the following weak ‘chain condition.’

Lemma 4.11. If (bi)i<ω is an |⌣
bu
-Morley sequence over A that is moreover Ac-

indiscernible, then b0 |⌣
bu

A
c.

Proof. Fix λ. Let µ = |bdduλ(Ac) \ bdduλ(A)|. Extend b<ω to (bi)i<µ+ . We still

have that for any i < j < µ+, bi |⌣
bu

A
bj (since this is only a property of tp(bibj/A)).

Therefore the sets bdduλ(Abi) \ bdduλ(A) are pairwise disjoint. Since there are µ+

many of them, one of them must be disjoint from bdduλ(Ac) \ bdduλ(A). Therefore

by indiscernibility, we must have b0 |⌣
bu

A
c. □

We will not use the following corollary of Lemma 4.11, but it is worth pointing
out.

Corollary 4.12. If I is a total |⌣
bu
-Morley sequence over A that is Ac-indiscernible,

then I |⌣
bu

A
c.

Proof. Extend I to an Ac-indiscernible sequence I0 + I1 + I2 + . . . with I0 = I.

Since I is totally |⌣
bu
-Morley, we have that (Ii)i<ω is an |⌣

bu
-Morley sequence over

A. So by Lemma 4.11, we have I = I0 |⌣
bu

A
c. □

Parts (2) and (3) of following definition are equivalent to [8, Def. 2.1, 3.4] in
our context; this formulation is used implicitly in [6] and its equivalence to the
standard definition is discussed in [6, Rem. 5.8]. The rest of it is based on [6,
Def. 5.7], although we have had to modify the definition of restriction slightly in
order to deal with limit ordinals more smoothly.

Definition 4.13. Fix a family (bf )f∈Tα
.

(1) For w ⊆ α, the restriction of Tα to the set of levels w is given by

Tα↾w = {f ∈ Tα : min dom(f) ∈ w, β ∈ dom(f) \ w ⇒ f(β) = 0}.
(2) A family (bf )f∈Tα is str-indiscernible over A if it is s-indiscernible over A

and satisfies that for any finite w, v ⊆ α \ limα with |w| = |v|, b∈Tα↾w and
b∈Tα↾v realize the same type over A (where we take b∈Tα↾w to be enumerated
according to <lex, which is a well-ordering on Tα↾w for finite w).

(3) We say that b∈Tα
is |⌣

bu
-spread-out over A if for any f ∈ T ∗

α (with dom(f) =

[β + 1, α) for some β < α), the sequence (b⊵f⌢i)i<ω is an |⌣
bu
-Morley

sequence over A.

(4) We say that b∈Tα↾w is |⌣
bu
-spread-out over A if for any f ∈ T ∗

α (with
dom(f) = [β + 1, α) for some β < α and satisfying that (f ⌢ i)i<ω is a

sequence of elements of Tα↾w), the sequence (b⊵f⌢i)i<ω is an |⌣
bu
-Morley

sequence over A (where we interpret bf as ∅ if f /∈ Tα↾w).

15This can also be proven directly by the standard argument for the existence of Morley
sequences.
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(5) b∈Tα
is an |⌣

bu
-Morley tree over A if it is |⌣

bu
-spread-out and str-indiscernible

over A.

Note that if b∈Tα
is |⌣

bu
-spread-out over A, then any restriction b∈Tα↾w is also

|⌣
bu
-spread-out over A (even for infinite w). Also note that, by a basic compactness

argument, if α is infinite and (bf )f∈Tα is str-indiscernible over A, then for any β,
we can find a tree (cf )f∈Tβ

which is str-indiscernible over A such that for any
w ∈ [α]<ω and v ∈ [β]<ω with |w| = |v|, b∈Tα↾w ≡A c∈Tβ↾v.

Proposition 4.14. For any set of hyperimaginaries A, real tuple b, and κ, there

is a tree (bf )f∈Tκ that is |⌣
bu
-spread-out and s-indiscernible over A such that for

each f ∈ Tκ, bf ≡A b.

Proof. Let (b0f )f∈T0
be defined by b0∅ = b. This is vacuously |⌣

bu
-spread-out and

s-indiscernible over A.
At successor stage α+1, given (bαf )f∈Tα which is |⌣

bu
-spread-out and s-indiscernible

by Proposition 4.9, we can find an extension (bα+1
f )f∈Fα+1

satisfying bα+1
ια,α+1(f)

= bαf
for all f ∈ Tα such that bα+1

∈Fα+1
is s-indiscernible over A and (bα+1

⊵⟨i⟩α)i<ω is an

|⌣
bu
-Morley sequence over A. By Fact 3.3, we can find bα+1

∅ ≡A b such that the

tree (bα+1
f )f∈Tα+1

is s-indiscernible over A. By construction, we now have that

(bα+1
f )f∈Tα+1

is |⌣
bu
-spread-out over A.

At limit stage α, let (bαf )f∈Tα
be the direct limit of (bβf )f∈Tβ

for β < α. It is

immediate from the definitions that bα∈Tα
is |⌣

bu
-spread-out and s-indiscernible over

A.
Once we have constructed (bκf )f∈Tκ

, let bf = bκf for each f ∈ Tκ. We have that
b∈Tκ

is the required tree by induction. □

By the same argument as in [6, Lem. 5.10], we get the following.

Fact 4.15. Fix a set of real parameters A, and let (bf )f∈Tκ be a family of tuples
of real parameters of the same length that is s-indiscernible over A. If κ ≥ ℶλ+(λ)
(where λ = 2|Abf |+|T |), then there is an str-indiscernible tree (cf )f∈Tω

such that
for any w ∈ [ω]<ω, there is v ∈ [κ]<ω such that

(∗)A for any w ∈ [ω]<ω, there is v ∈ [κ]<ω such that (bf )f∈Tκ↾v ≡A (cf )f∈Tω↾w.

Note that Fact 4.15 generalizes to continuous logic by the same soft argument
as in the discussion after Fact 3.3.

Lemma 4.16. Suppose that a family of tuples of real elements (bf )f∈Tκ is |⌣
bu
-

spread-out and s-indiscernible over a set of hyperimaginaries A with all bf tuples of

the same length. If κ ≥ ℶλ+(λ) (where λ = 2|Abf |+|T |), then there is an |⌣
bu
-Morley

tree (cf )f∈Tω
over A such that condition (∗)A from Fact 4.15 holds.

Proof. Find a model M with |M | ≤ |A| + ℵ0 such that A ⊆ bddheq(M). Apply
Fact 4.15 with M as the base to the family (bf )f∈Tκ

to get a tree (cf )f∈Tω
that

is str-indiscernible over M and satisfies (∗)M . This is enough to imply that c∈Tω

is str-indiscernible over A and satisfies (∗)A. Furthermore, since the tree c∈Tω

has height ω and since b∈Tκ
is |⌣

bu
-spread-out over A, (∗)A implies that c∈Tω

is

|⌣
bu
-spread-out over A. Therefore c∈Tω

is an |⌣
bu
-Morley tree over A. □
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Proposition 4.17. If (bf )f∈Tω
is a family of tuples of real elements that is an

|⌣
bu
-Morley tree over a set of hyperimaginaries A, then (bζω

β
)β<ω is a weakly total

|⌣
bu
-Morley sequence over A.

Proof. Fix a linear order O. Let cα = bζω
α
for each α < ω.

For each positive n < ω and each i < j < ω, we have that b⊵ζω
n⌢i |⌣

bu

A
b⊵ζω

n⌢j

and that the sequence (b⊵ζω
n⌢i)i<ω is Ac≥n-indiscernible. By compactness, we can

find (ci)i∈O such that (ci)i∈ω+O is A-indiscernible and such that (b⊵ζω
n⌢i)i<ω is

Ac∈[n,ω)+O-indiscernible for each n < ω.

Therefore, by Lemma 4.11, we have that c<n |⌣
bu

A
c∈[n,ω)+O. Hence, (bζω

β
)β<ω is

a weakly total |⌣
bu
-Morley sequence. □

Corollary 4.18. For any set of hyperimaginaries A and tuple of real elements b,
there is an A-indiscernible sequence (bi)i<ω with b0 = b such that for any b′ ≡L

A b
and n < ω, there are I0, J0, I1, J1 . . . , Jk−1, Ik with

• b the first element of I0,
• b′ the first element of Ik,
• |Ii| = n for all i ≤ k,
• Ji infinite for all i < k, and
• Ii+Ji and Ii+1+Ji realizing the same EM-type over A as b<ω for all i < k.

We can also arrange it so that Ii is infinite for all i ≤ k, |Ji| = n for all i < k, and
Ii + Ji and Ii+1 + Ji realize the same EM-type over A as b<ω in the reverse order
for all i < k (with the same choice of b<ω but possibly a different k).

Proof. By Lemma 4.16 and Proposition 4.17, we can find a sequence (bi)i<ω with

b0 = b that is a weakly total |⌣
bu
-Morley sequence over A. Fix n < ω, and write

b<ω as I + J with |I| = n. By repeating the proof of Proposition 4.3, we get the
required configuration of Ii’s and Ji’s.

For the final statement, by compactness, we can find an indiscernible sequence
K of order type ω which has b as its first element and realizes the reverse of the
EM-type of b<ω over A. Fix an n < ω. If we partition K as I+J where |J | = n and
again repeat the proof of Proposition 4.3, we get the second required configuration
of Ii’s and Ji’s. □

To go further, we will need the following fact from [10]. Recall that the statement
κ → (α)<ω

γ means that whenever f : [κ]<ω → γ is a function, there is a set X ⊆ κ
of order type α such that for each n < ω, f is constant on [X]n.

Fact 4.19 (Silver [10, Ch. 4]). For any limit ordinal α, if κ is the smallest cardinal
satisfying κ → (α)<ω

2 , then for any γ < κ, κ → (α)<ω
γ . Furthermore, κ is strongly

inaccessible.

The smallest cardinal λ satisfying λ → (α)<ω
2 is called the Erdős cardinal κ(α).

In the specific case of α = ω, we will also need the following lemma.

Lemma 4.20. If κ → (ω)<ω
γ , then (γκ)+ → (ω + 1)<ω

γ . In particular, if κ(ω)

exists, then (2κ(ω))+ → (ω + 1)<ω
γ for any γ < κ(ω).

Proof. Fix a set X of cardinality (γκ)+ and a coloring f : [X]<ω → γ. Fix an or-
dering (xα)α<(γκ)+ of X. Recall that a subset Y ⊆ X is end-homogeneous if for any

δ0 < · · · < δn−1 < α < β < (γκ)+, f({xδ0 , . . . , xδn−1
, xα}) = f({xδ0 , . . . , xδn−1

, xβ}).
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By [5, Lem. 15.2], there is an end-homogeneous set Y ⊆ X of order type κ + 1.
Let (yα)α<κ+1 be an enumeration of Y in order. Let g(A) = f(A ∪ {yκ}). By
assumption, there is a g-homogeneous subset Z ⊆ Y of order type ω. Therefore, by
construction, Z ∪ {yκ} is the required f -homogeneous subset of order type ω + 1.

The last statement follows from the fact that κ(ω) is strongly inaccessible and
cardinal arithmetic (i.e., 2κ(ω) = γκ(ω) for γ > 1 with γ < κ(ω)). □

Lemma 4.21. Suppose (bf )f∈Tλ
is |⌣

bu
-spread-out and s-indiscernible over A with

all bf tuples of the same length. If λ → (ω + 1)<ω
2|Ab|+|T | , then there is a set X ⊆

λ \ limλ with order type ω + 1 such that b∈Tλ↾X is an |⌣
bu
-Morley tree over A.

Proof. Let t be the function on [λ \ limλ]<ω that takes w ∈ [λ \ limλ]<ω to
tp(b∈Tλ↾w/A). By assumption, we can find X ⊂ λ \ limλ of order type ω + 1 such

that t is homogeneous on X. b∈Tλ↾X is s-indiscernible over A and |⌣
bu
-spread-out

over A, since these properties are both preserved by passing to restrictions. □

Theorem 4.22. For any A and b in any theory T , if there is a cardinal λ satisfying

λ → (ω+1)<ω
2|Ab|+|T | , then there is a total |⌣

bu
-Morley sequence (bi)i<ω over A with

b0 = b.
In particular, it is enough if there is an Erdős cardinal κ(α) such that |Ab|+|T | <

κ(α) (for any limit α ≥ ω).

Proof. If the Erdős cardinal κ(α) exists and |Ab|+ |T | < κ(α), then by Fact 4.19,
we have 2|Ab|+|T | < κ(α) as well. Then if α = ω, we have that (2κ(ω))+ → (ω +
1)<ω

2|Ab|+|T | by Lemma 4.20. If α > ω, we clearly have κ(α) → (ω + 1)<ω
2|Ab|+|T | by

Fact 4.19. So in any such case we have the required λ.
Let λ be a cardinal such that λ → (ω + 1)<ω

2|Ab|+|T | holds. By Proposition 4.14,

we can build a tree (bf )f∈Tλ
that is s-indiscernible and |⌣

bu
-spread-out over A. By

Lemma 4.21 and the choice of λ, we can extract an |⌣
bu
-Morley tree (cf )f∈Tω+1

from this.
By compactness, we can extend this to a tree (cf )f∈Tω+ω

that is str-indiscernible
over A. We still have that for any i < j < ω,

c⊵ζω+ω
ω+1 ⌢i |⌣

bu

A
c⊵ζω+ω

ω+1 ⌢j

but now we also have that the (c⊵ζω+ω
ω+1 ⌢i)i<ω is A ∪ {cζω+ω

ω+i
: i < ω}-indiscernible,

by str-indiscernibility of the full tree c∈Tω+ω
. Therefore, by Lemma 4.11,

c⊵ζω+ω
ω+1 ⌢0 |⌣

bu

A
{cζω+ω

ω+i
: i < ω},

so in particular,

{cζω+ω
i

: i < ω} |⌣
bu

A
{cζω+ω

ω+i
: i < ω}.

Let di = cζω+ω
i

for each i < ω + ω. We have that (di)i<ω+ω is A-indiscernible.

Furthermore, by Theorem 4.8, we have that d<ω is a total |⌣
bu
-Morley sequence.

By applying an automorphism, we get the required b<ω. □

So if we assume that for every λ, there is a κ such that κ → (ω + 1)<ω
λ , we get

that Lascar strong type is always witnessed by total |⌣
bu
-Morley sequences in the

manner of Proposition 4.3.
The use of large cardinals in Theorem 4.22 leaves an obvious question.
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Question 4.23. Does the statement ‘for every A and b, there is a total |⌣
bu
-Morley

sequence (bi)i<ω over A with b0 = b’ have any set-theoretic strength? What if we
add cardinality restrictions, such as |A|+ |T | ≤ ℵ0 and |b| < ℵ0?

4.3. Total |⌣
bu
-Morley sequences in tame theories. Lemma 4.11 can be used

to show that |⌣
d
implies |⌣

bu
(where b |⌣

d

A
c means that tp(b/Ac) does not divide

over A), something which was previously established for bounded hyperimaginary

independence, |⌣
b
, in [4, Cor. 4.13] and which was originally folklore for algebraic

independence, |⌣
a
.16

Proposition 4.24. For any real elements A, b, and c, if b |⌣
d

A
c, then b |⌣

bu

A
c.

Proof. Let (ci)i<ω be an |⌣
bu
-Morley sequence over A with c0 = c. Since b |⌣

d

A
c, we

may assume that c<ω is Ab-indiscernible. Therefore, by Lemma 4.11, b |⌣
bu

A
c. □

Corollary 4.25. If (bi)i<ω is a (non-dividing) Morley sequence over A, then it is

a total |⌣
bu
-Morley sequence over A. □

In simple theories, we get the converse (Proposition 4.27). Recall that B |⌣
b

A
C

means bddheq(AB) ∩ bddheq(AC) = bddheq(A).

Lemma 4.26. Let T be a simple theory. For any A, b, and c, b |⌣
f

A
C if and only

if there is an AC-indiscernible sequence (bi)i<ω with b0 = b such that for any J and

K with J +K ≡EM
A b<ω, J |⌣

b

A
K.

Proof. (The argument here is similar to the proof of [1, Lem. 3.2], but we will

give a proof for the sake of completeness.) If b |⌣
f

A
C, then we can build an AC-

indiscernible |⌣
f
-Morley sequence (bi)i<ω over A with b0 = b (since T is simple). By

some forking calculus, we have that J |⌣
f

A
K for any J and K with J+K ≡EM

A b<ω.

Therefore, by [4, Cor. 4.13], J |⌣
b

A
K for any such J and K as well.

Conversely, assume that there is an AC-indiscernible sequence (bi)i<ω with b0 =

b such that for any J and K with J +K ≡EM
A b<ω, J |⌣

b

A
K. Let κ be a regular

cardinal such that every type (in the same sort as C) does not fork over some
set of cardinality less than κ. Let (bi)i<κ+κ∗ be an AC-indiscernible sequence
extending b<ω, where κ∗ is an order-reversed copy of κ. Now we clearly have that

b<κ |⌣
b

A
b∈κ∗ . By local character, there is a set D ⊆ Ab<κ with |D| < κ such that

C |⌣
f

D
Ab<κ. Since κ is regular, there is a λ < κ such thatD ⊆ Ab<λ. Therefore, by

base monotonicity, C |⌣
f

Ab<λ
Ab<κ. Since b≥λ is Ab<λC-indiscernible, we have that

C |⌣
f

Ab<λ
Ab∈κ+κ∗ . Therefore, by base monotonicity again, C |⌣

f

Ab<κ
Ab∈κ+κ∗ . By

the symmetric argument, C |⌣
f

Ab∈κ∗
Ab∈κ+κ∗ as well.

In simple theories, forking is characterized by canonical bases in the follow-

ing way: E |⌣
f

D
F (with D ⊆ F ) holds if and only if cb(tp(E/bddheq(F ))) ∈

bddheq(D) [7, Lem. 4.3.4]. Therefore, we have that cb(tp(C/bddheq(Ab∈κ+κ∗))) ∈
bddheq(Ab<κ) ∩ bddheq(Ab∈κ∗), but bddheq(Ab<κ) ∩ bddheq(Ab∈κ∗) = bddheq(A)

16There is an incorrect proof of this in the literature. To the author’s knowledge, the first
correct published proof of this is in [4, Thm. 4.11].



26 JAMES E. HANSON

by assumption. So C |⌣
f

A
b∈κ+κ∗ , whence C |⌣

f

A
b0 and hence b0 |⌣

f

A
C, as re-

quired. □

Proposition 4.27. Let T be a simple theory. For any A and A-indiscernible
sequence I, the following are equivalent.

(1) I is an |⌣
f
-Morley sequence over A.

(2) For any J and K with J +K ≡EM
A I, J |⌣

b

A
K.

(3) I is a total |⌣
bu
-Morley sequence over A.

Proof. (1)⇒(3) is Corollary 4.25. (3)⇒(2) is obvious. For (2)⇒(1), assume that
(2) holds. Fix (bi)i<ω+ω ≡EM

A I. (bi)ω≤i<ω+ω is Ab<ω-indiscernible. Therefore by

Lemma 4.26, bω |⌣
f

A
b<ω, and we have that b<ω+ω, and therefore I, is an |⌣

f
-Morley

sequence over A. □

On the other hand, there are easy examples in NIP theories (such as DLO) of

total |⌣
bu
-Morley sequences that are not strict Morley sequences (i.e., sequences b<ω

satisfying that bi |⌣
f

A
b<i and b<i |⌣

f

A
bi for all i < ω). Fix a model M of DLO and

let (aibi)i<ω be a sequence of elements above M satisfying ai < ai+1 < bi+1 < bi
for all i < ω. This is a total |⌣

bu
-Morley sequence since it is generated by an M -

invariant type, but it is clearly not a strict Morley sequence. DLO can also be used

to show that not every |⌣
þ
-Morley sequence in a rosy theory is a total |⌣

bu
-Morley

sequence (e.g., [1, Ex. 3.13] is an |⌣
þ
-Morley sequence since þ-forking in DLO is

trivial but fails to even be an |⌣
b
-Morley sequence).

In NSOP1 theories, we do get that tree Morley sequences are total |⌣
bu
-Morley

sequences.

Proposition 4.28. Let T be an NSOP1 theory, and let M |= T . If I is a tree

Morley sequence over M , then it is a total |⌣
bu
-Morley sequence over M .

Proof. Let J be a sequence realizing the same EM-type as I over M . Find K ≡M I

such that K |⌣
K

M
IJ . Let I ′, J ′, and K ′ have the same order type such that I + I ′,

J + J ′, and K +K ′ are all M -indiscernible. Since these are tree Morley sequences,

we have that I |⌣
K

M
I ′, J |⌣

K

M
J ′, and K |⌣

K

M
K ′. Therefore, by the independence

theorem for NSOP1 theories, we can find I ′′ and J ′′ such that I + I ′′, K + I ′′,
K + J ′′, and J + J ′′ are all M -indiscernible, so I ≈M J .

Since we can do this for any such J , we have that I is a total |⌣
bu
-Morley sequence

by Theorem 4.8 and the fact that Lascar strong types are types over models. □

The converse is unclear. The argument in the context of simple theories relies
on the existence of canonical bases for types.

Question 4.29. If T is NSOP1, is every total |⌣
bu
-Morley sequence over M |= T

a tree Morley sequence over M?
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