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Abstract. We explore approximate categoricity in the context of distortion
systems, introduced in our previous paper [6], which are a mild generaliza-
tion of perturbation systems, introduced by Ben Yaacov [2]. We extend Ben
Yaacov’s Ryll-Nardzewski style characterization of separably approximately
categorical theories from the context of perturbation systems to that of distor-
tion systems. We also make progress towards an analog of Morley’s theorem for
inseparable approximate categoricity, showing that if there is some uncount-
able cardinal κ such that every model of size κ is ‘approximately saturated,’
in the appropriate sense, then the same is true for all uncountable cardinali-
ties. Finally we present some examples of these phenomena and highlight an
apparent interaction between ordinary separable categoricity and inseparable
approximate categoricity.

Introduction

This paper is a direct continuation of [6], in which we generalized perturbation
systems, a notion of approximate isomorphism for continuous logic introduced by
Ben Yaacov in [2], to ‘distortion systems’ in order to accommodate the Gromov-
Hausdorff and Kadets distances. Ben Yaacov introduces perturbation systems in
order to generalize an unpublished result of Henson’s, specifically a Ryll-Nardzewski
type characterization of Banach space theories that are ‘approximately separably
categorical’ with regards to the Banach-Mazur distance. Ben Yaacov’s formalism
requires that approximate isomorphisms be witnessed by uniformly continuous bi-
jections with uniformly continuous inverses, meaning that it cannot accommodate
things like the Gromov-Hausdorff and Kadets distances. Our broader formalism
also allowed for generalizations of some of the results of [5] to perturbation sys-
tems, such as explicit Scott sentences axiomatizing the class of Banach spaces with
Banach-Mazur distance 0 to a given Banach space.

In this paper we will first recall the relevant results of [6] as well as develop some
additional machinery to deal with types over sets of parameters. In particular we
will need to introduce the correct analog of the d-metric on types, which is typi-
cally distinct from the metric δ∆ induced on type spaces by the distortion system
∆. Then we will develop a generalization of atomic types to this approximate con-
text, which are necessary to state and prove the main results of this paper. This
generalization is a specific instance of concepts developed in [3]. Finally, we will
present some examples of theories with various combinations of exact and approxi-
mate categoricity, highlighting a gap in the currently known examples. Our explicit
examples are in the context of pure metric spaces with Gromov-Hausdorff and Lips-
chitz distances, but we should note that there is an earlier explicit construction due
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to Tellez of a Banach-Mazur-ω-categorical Banach space that is not ω-categorical
[9].

The main results of this paper are an extension of Ben Yaacov’s separable cate-
goricity result to distortion systems in general and one direction of an approximate
Morley’s theorem, namely we will define an appropriate notion of ‘∆-saturation’
for a distortion system ∆, show that if a theory is ∆-κ-categorical for some un-
countable κ, then every model of it of density character κ is ∆-saturated, and then
show that if every model of density character κ is ∆-saturated for some uncount-
able κ, then the same is true for any uncountable λ. The difficulty arises in trying
to show that two inseparable ∆-saturated structures of the same density character
are ‘almost ∆-approximately isomorphic’, where the ‘almost’ is a technical weaken-
ing that’s only non-trivial in certain poorly behaved ‘irregular’ distortion systems
(all of the four motivating examples are regular). The best we seem to be able to
get is that they are ‘potentially almost ∆-approximately isomorphic,’ i.e. almost
∆-approximately isomorphic in a forcing extension in which they are collapsed to
being separable.

For the general formalism of continuous logic and the majority of the notation
used here, see [4]. As opposed to [4], however, we (implicitly) opt for the extended
definition of formula they allude to in and before Proposition 9.3. Specifically, we
allow arbitrary continuous functions from Rω to R as connectives. This means
that formulas may use countably many constants and have countably many free
variables, but also, most importantly, that the collection of formulas is closed under
uniformly convergent limits up to logical equivalence. Note that this does not
increase the expressiveness of first-order continuous logic, despite the presence of
infinitary connectives. Continuous generalizations of Lω1ω (such as those studied in
[5]) are fundamentally more expressive because the infinitary connectives introduced
there (sup and inf of sequences of formulas) are not continuous on Rω (although
the resulting formulas in [5] are still continuous on structures).

Here are the rest of the notational conventions used in this paper.

Notation 0.1.
• Let (X, d) be a metric space. Let x ∈ X, A ⊆ X, and ε > 0.

(i) Bd≤ε(x) = {y ∈ X : d(x, y) ≤ ε}
(ii) d(x,A) = inf{d(x, y) : y ∈ A}
(iii) #dc(A, d), the metric density character of A with regards to d, is the

minimum cardinality of a d-dense subset of A.
(iv) #ent

>ε (A, d), the ε-metric entropy of A with regards to d, is sup |B|,
where B ⊆ A ranges over (>ε)-separated sets.

We will drop the d if the metric is clear from context.
• To avoid confusion with the established logical roles of ∧ and ∨ we will avoid

using this notation for min and max but in the interest of conciseness we will
let x ↑ y := max(x, y) and x ↓ y := min(x, y). Note that M |= ϕ ↑ ψ ≤ 0 if
and only if M |= ϕ ≤ 0 and M |= ψ ≤ 0, and likewise M |= ϕ ↓ ψ ≤ 0 if
and only if M |= ϕ ≤ 0 or M |= ψ ≤ 0.

We take ↑ and ↓ to have higher binding precedence than addition but
lower binding precedence than multiplication, so for example ab ↑ c + d =
((ab) ↑ c) + d. We will never write expressions like x ↑ a ↓ b.

• If ϕ is a formula and r is a real number (or perhaps another formula), we
will write expressions such as Jϕ < rK and Jϕ ≥ rK to represent the sets
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of types (in some type space that will be clear from context) satisfying the
given condition.

Here we will fix a few basic concepts from [6].

Definition 0.2. Fix a language L with sorts S, L-pre-structures M and N, and
tuples m̄ ∈M and n̄ ∈ N of the same length with elements in the same sorts.

(i) The sort-by-sort product of M and N, written M ×S N, is the collection⊔
s∈S s(M)× s(N). If L is single-sorted we will take ×S to be the ordinary

Cartesian product.
(ii) A correlation between M and N is a set R ⊆ M ×S N such that for each

sort s, R � s := R � s(M) × s(N) is a total surjective relation. We will
write cor(M, m̄;N, n̄) for the collection of correlations between M and N
such that for each index i less than the length of m̄, (mi, ni) ∈ R (for any
binary relation we will abbreviate this condition as (m̄, n̄) ∈ R). If m̄ and
n̄ are empty we will write cor(M,N).

(iii) An almost correlation between M and N is a correlation between dense
sub-pre-structures of M and N. We will write acor(M, n̄;N, m̄) for the
collection of almost correlations R between M and N such that (m̄, n̄) ∈ R.

1. Distortion Systems

Now we will recall definitions and results from our previous paper [6] that are
integral to the results in this paper. To see proofs of these results refer to [6].

A distortion system is a generalization of the definition of Gromov-Hausdorff dis-
tance given in terms of correlations and distortions of correlations, where distortion
is defined by

dis(R) =
1

2
sup

(x̄,ȳ)∈R
|d(x0, x1)− d(y0, y1)| ,

where R is a correlation between some pair of metric spaces X and Y . The Gromov-
Hausdorff distance between two metric spaces is the infimum of the distortions of
correlations between them. This suggests a generalization to languages involving
predicate symbols other than just the metric, in which we compute distortion rel-
ative to those formulas as well. This approach is highly language dependent and
only presents one notion of approximate isomorphism for a given language. A more
flexible approach is to allow for an arbitrary collection of formulas in the definition
of distortion, yielding this definition.

Definition 1.1. A set of formulas ∆ is a distortion system for T if it is logically
complete and closed under renaming variables, quantification, 1-Lipschitz connec-
tives, logical equivalence modulo T , and uniformly convergent limits.

Let ∆ be a distortion system (or any other collection of (finitary) L-formulas)
and let T be an L-theory. Let M,N |= T with m̄ ∈M and n̄ ∈ N.

(i) For any relation R ⊆M×S N, we define the distortion of R with respect to
∆ as follows:

dis∆(R) = sup{|ϕM(m̄)− ϕN(n̄)| : ϕ ∈ ∆, (m̄, n̄) ∈ R}
(ii) We define the ∆-distance between (M, m̄) and (N, n̄) as follows:

ρ∆(M, m̄;N, n̄) = inf{dis∆(R) : R ∈ cor(M, m̄;N, n̄)}
If m̄ and n̄ are empty we will just write ρ∆(M,N).
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(iii) We say that (M, m̄) and (N, n̄) are ∆-approximately isomorphic, written
(M, m̄) ∼∼∼∆ (N, n̄), if ρ∆(M, m̄;N, n̄) = 0.

We will also need notions of almost ∆-similarity, written a∆(M, m̄;N, n̄), and al-
most ∆-approximate isomorphism, defined analogously to ρ∆ and ∆-approximate
isomorphism, respectively, but with almost correlations instead of correlations.

The closure requirements on distortion systems are natural in the sense that
they give a canonical collection of formulas for the corresponding notion of approx-
imate isomorphism. This requirement is harmless, as shown in [6], in the sense
that dis∆(R) = dis∆(R) for any collection of formulas ∆ and almost correlation R,
where ∆ is the closure of ∆ under renaming variables, quantification, 1-Lipschitz
connectives, logical equivalence modulo T , and uniformly convergent limits. Typ-
ically a distortion system is specified in terms of a handful of atomic formulas, as
with the Gromov-Hausdorff distance above. The only worry is that given a col-
lection of (atomic) formulas ∆, the closure ∆ may fail to be logically complete, as
required by the definition of a distortion system. An easy result, given in [6], is
that if ∆ is logically complete for atomic types (or ‘atomically complete’) then ∆
is a distortion system.

As it happens this approach is flexible enough to capture other common notions
of approximate isomorphism, such as the Lipschitz distance for metric spaces as
well as the Banach-Mazur and Kadets distances for Banach spaces and exact iso-
morphism in any signature. On the other hand, this broader approach also allows
for certain pathological behavior, in particular there may be pairs of structures for
which ρ∆(M,N) > a∆(M,N). All of the motivating examples fall under one of a
couple of niceness conditions that prevent this.

Definition 1.2. Let ∆ be a distortion system for T .
(i) We say that ∆ is regular if there is an ε > 0 such that for any models

M,N |= T , any almost correlation R ∈ acor(M,N) with dis∆(R) < ε, and
any δ > 0, there exists a correlation S ∈ cor(M,N) such that S ⊇ R and
dis∆(S) ≤ dis∆(R) + δ.

(ii) We say that ∆ is functional if there is an ε > 0 such that for any models
M,N |= T and any closed R ∈ acor(M,N), if dis∆(R) < ε, then R is the
graph of a uniformly continuous bijection between M and N with uniformly
continuous inverse.

(iii) We say that ∆ is uniformly uniformly continuous or u.u.c. if for every
ε > 0 there exists a δ > 0 such that for any models M,N |= T and
any almost correlation R ∈ acor(M,N), dis∆(R<δ) ≤ dis∆(R) + ε, where
R<δ = {(a, b) : (∃(c, d) ∈ R)dM(a, c), dN(b, d) < δ}.

Note that functional and u.u.c. both imply regular.
By closing under certain operations on formulas we get a precise syntactic char-

acterization of the metric δ∆ induced on type space by a distortion system.

Definition 1.3. Let ∆ be a distortion system for T . For each λ and any p, q ∈ Sλ,
let

δλ∆(p, q) = inf{ρ∆(M, m̄;N, n̄) : m̄ |= p, n̄ |= q}.
We will typically drop the λ when it is clear from context.

Proposition 1.4. Let ∆ be a distortion system for T .
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(i) δλ∆(p, q) = supϕ∈∆ |ϕ(p) − ϕ(q)|, where ϕ(r) means the unique value of ϕ
entailed by the type r.

(ii) δλ∆ is a topometric on Sλ(T ), i.e. it is lower semi-continuous and refines
the topology.

(iii) (Monotonicity) For any p, q ∈ Sλ+α(T ), if p′, q′ ∈ Sλ(T ) are restrictions of
p and q to the first λ variables, then δλ∆(p′, q′) ≤ δλ+α

∆ (p, q).
(iv) For any p, q ∈ Sλ(T ) and any permutation σ : λ→ λ, dn∆(p, q) = dn∆(σp, σq),

where σr is the type r(xσ(0), xσ(1), . . . ).
(v) (Extension) For any p, q ∈ Sλ(T ) and p′ ∈ Sλ+α(T ) extending p there exists

a q′ ∈ Sλ+α(T ) extending q such that dλ∆(p, q) = dλ+α
∆ (p′, q′).

(vi) For any infinite λ, δλ∆(p, q) = sup δn∆(p′, q′), where p′ and q′ range over
restrictions of p and q to finite tuples of variables.

Proposition 1.4 also gives a picture more similar to the definition of perturbation
systems, which are presented in terms of a compatible family of topometrics on type
spaces. An analogous characterization (essentially the converse of the key points of
Proposition 1.4) of distortion systems is given in [6], but it is unneeded here.

Given a correlation R between two metric structures M and N if we take the
metric closure of R we do not increase its distortion, so we can bundle this together
as a single metric structure (M,N, R), with R encoded by a distance predicate
on M × N making it into a definable set. Any sufficiently saturated elementary
extensions of this structure will give correlations with the same distortion. Anything
elementarily equivalent to this structure gives at least an almost correlation. Several
other technical considerations necessitate the use of almost correlations in general,
but for regular distortion systems it is not necessary to consider almost correlations.
All of the motivating examples—the Gromov-Hausdorff and Lipschitz distances for
metric spaces and the Banach-Mazur and Kadets distances for Banach spaces—are
well behaved in this sense. The collection of structures of the form (M,N, R) with
M,N |= T , R a closed almost correlation, and dis∆(R) ≤ ε turns out to be an
elementary class. In [6] we gave a precise characterization of theories arising this
way and showed that the distortion system can be recovered from the corresponding
family of theories.

1.1. Parameters in Distortion Systems and d∆. Eventually we will need the
correct analog of the d-metric for counting types in stability considerations and
other things. This concept was introduced by Ben Yaacov in the slightly less general
context of perturbations [2]. Our δ∆ is analogous to his p and our d∆ is analogous
to his p0

ā.
Given a complete theory T and a collection of parameters A in some M |= T , TA

is the theory in the language LA with constants added for the parameters A. Given
a distortion system ∆ for T , there is a natural way to extend it to a distortion
system ∆(A) for TA.

Definition 1.5. Let ∆ be a distortion system for a complete theory T . Let A ⊆
M |= T be some set of parameters. ∆(A) = {ϕ(x̄, ā) : ϕ ∈ ∆, ā ∈ A}.

Clearly ∆(A) is still a distortion system and it’s easy to see that for models M,
N containing A, we have ρ∆(A)(M,N) = ρ∆(M, A;N, A).

Definition 1.6. For any distortion system ∆ and set of fresh constant symbols C,
let D(∆, C) be D0(∆, C), where D0(∆, C) = ∆ ∪ {d(x, c)}c∈C .
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Proposition 1.7. If ∆ is a distortion system, then for any set of fresh constant
symbols C, D(∆, C) is a distortion system.

Proof. This follows immediately from the fact regarding closures of atomically com-
plete collections of formulas mentioned in Section 1. �

The fact that D(∆, C) is a distortion system isn’t what is important about it,
although it is convenient. What is important is that δ0

D(∆,c̄) plays an analogous
role to that of the d-metric in type spaces. In particular if ∆ is the collection of
all formulas and p, q ∈ Sn(T ) are two types, then δ0

D(∆,c̄)(p(c̄), q(c̄)) = d(p, q) (note
that in this expression p(c̄) and q(c̄) are 0-types, i.e. complete Lc̄-theories). To this
end we will introduce notation to make the analogy more prominent.

Definition 1.8. If T is a complete theory, ∆ is a distortion system for T , and A
is some set of parameters in some model of T , then for any λ and p, q ∈ Sλ(A), we
let

d∆,A(p, q) = δ0
D(∆(A),c̄)(p(c̄, A), q(c̄, A)).

We will drop A when it is empty.

Given how many layers there are to the definition of d∆,A, the following will be
useful for computing estimates of d∆,A and is really the best way to think about it.
But first recall the following lemma from [6].

Lemma 1.9. Let ∆ be a distortion system. For every predicate symbol P and every
ε > 0 there is a δ > 0 such that if ρ∆(M, m̄;N, n̄) < δ then |PM(m̄)−PN(n̄)| < ε.

Proposition 1.10. Let T be a complete theory, let ∆ be a distortion system for T .
(i) For every ε > 0 there is a δ > 0 such that if there are models M,N |= T both

containing some set of parameters A, tuples m̄ ∈M and n̄, b̄ ∈ N such that
m̄ |= p and n̄ |= q, and an R ∈ cor(M, Am̄;N, Ab̄), and dis∆(R), dN(n̄, b̄) ≤
δ, then d∆,A(p, q) ≤ ε.

(ii) For any set of parameters A, if d∆,A(p, q) ≤ ε, then there exists models
M,N |= T containing A, tuples m̄ ∈M and n̄, b̄ ∈ N such that M |= p(m̄)
and N |= q(n̄), and an R ∈ cor(M, Am̄;N, Ab̄) such that dis∆(R) ≤ ε and
dN(n̄, b̄) ≤ ε.

Proof. (i): Fix ε > 0, By Lemma 1.9, there is a δ > 0 such that if δ∆(tp(ab),
tp(ce)) ≤ δ, then |d(a, b)−d(c, e)| ≤ 1

2ε. Without loss assume that δ < 1
2ε. Assume

that there are models M,N |= TA with tuples m̄ ∈ M and n̄, b̄ ∈ N such that
m̄ |= p and n̄ |= q, and an R ∈ cor(M, Am̄;N, Ab̄), such that dis∆(R) ≤ δ and
dN(n̄, b̄) ≤ δ.

We need to compute disD(∆(A),c̄)(R) = disD0(∆(A),c̄)(R). Clearly we already have
that disD0(∆(A),c̄)(R) ≥ dis∆(A)(R). We just need to compute supc∈c̄,(u,v)∈R |dM(u,

c)−dN(v, c)|. For any i < |m̄|, we have that (mi, bi) ∈ R. So for any (u, v) ∈ R, we
have that |dM(mi, u) − dN(bi, v)| ≤ 1

2ε, so we also have |dM(mi, u) − dN(ni, v)| ≤
1
2ε+δ < ε. Therefore all together we have that disD(∆(A),c̄)(R) = disD0(∆(A),c̄)(R) ≤
ε, as required.

(ii): We have that since d∆(p, q) = δ0
D(∆(A),c̄) ≤ ε, we can construct mod-

els (M, m̄) |= p(m̄) and (N, n̄) |= q(n̄) and an R ∈ cor(M, m̄;N, n̄) such that
disD(∆(A),c̄)(R) ≤ ε. Find b̄ ∈ N such that (m̄, b̄) ∈ R. Now we have that
|dM(m̄, m̄)− dN(b̄, n̄)| ≤ ε, so in particular dN(n̄, b̄) ≤ ε, as required. �
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In particular d∆,A is always uniformly dominated by d on Sn(A) and δ∆ restricted
to Sn(A). Moreover as witnessed by the identity correlation on a sufficiently satu-
rated model of TA, d∆,A ≤ d always holds.

Corollary 1.11. If T is a complete theory and ∆ is a u.u.c. distortion system
for T , then for every ε > 0 there is a δ > 0 such that for any λ and any types
p, q ∈ Sλ(T ), if d∆(p, q) < δ then δ∆(p, q) < ε, i.e. δ∆ and d∆ are uniformly
equivalent.

In fact it’s not hard to see that δ∆ and d∆ being uniformly equivalent like this
(in a way that is uniform across all parameter free type spaces) characterizes u.u.c.
distortion systems. Furthermore this means that with u.u.c. ∆ we don’t need to be
careful about the distinction between (Sn(A), d∆) and (Sn(A), d∆,A), as these two
metrics are always uniformly equivalent.

2. Approximately Atomic Types

The following concepts, developed in general by Ben Yaacov in [3], will be central
in this paper, although we have chosen to use the term ‘d-atomic’ rather than
‘d-isolated’ to avoid confusion with ‘isolated with respect to d’ and to emphasize
that these notions will play roles analogous to atomic types.

Definition 2.1. Let X be a topological space and d : X2 → R a metric (not
necessarily related to the topology). Let x be a point in X.

• x is d-atomic if x ∈ intB≤ε(x) for every ε > 0.
• x is weakly d-atomic if intB≤ε(x) 6= ∅ for every ε > 0.

If Y is a subspace containing x, and x is (weakly) d-atomic in Y , we will say that x
is relatively (weakly) d-atomic in Y or just (weakly) d-atomic-in-Y (with interiors
computed in the subspace topology on Y ).

The concept of weak d-atomicity will only be important in Subsection 3.1 in the
context of separable approximate categoricity.

Lemma 2.2. If (X, d) is a compact topometric space, then for any closed set F ⊆ X
x ∈ F is d-atomic-in-F if and only if there is a continuous function f : X → R
such that f(x) = 0 and for all y ∈ F , d(x, y) ↓ 1 ≤ f(y).

Proof. Topometric spaces are always Hausdorff so it is sufficient to construct a
continuous function on just F and then we can extend it by the Tietze extension
theorem.

Let G0 = Bd≤1/2(x) (as a subset of F ). For every i < ω, let Ui = intFGi (once
Gi is defined). Given Gi, and therefore also Ui, find an εi > 0 small enough that
Bd≤εi(x) ⊆ Ui, which always exists by compactness, and such that εi < 2−i.

For each i < ω, let fi : F → [0, 2−i−1] be a continuous function such that
Gi+1 ⊆ f−1

i (0) and F \ Ui ⊆ f−1
i (2−i−1), which is possible by Urysohn’s lemma.

Now let f =
∑
i<ω fi. f has the required properties. �

The material after this point will only be important in Subsection 3.2 in the
context of inseparable approximate categoricity.

Corollary 2.3. Fix a complete first-order theory T , distortion system ∆ for T ,
parameter set A, and a type p ∈ Sn(A).
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(i) p is δ∆(A)-atomic if and only if there is an A-formula ϕ such that ϕ(p) = 0
and for any formula ψ(x̄, ȳ) ∈ ∆ and ā ∈ A, |ψ(q, ā) − ψ(p, ā)| ↓ 1 ≤ ϕ(q)
for all q ∈ Sn(A).

(ii) p is d∆,A-atomic if and only if there is an A-formula ϕ such that ϕ(p) = 0
and for any formula ψ(c̄, ȳ) ∈ D(∆(A), c̄) and ā ∈ A, |ψ(q, ā) − ψ(p, ā)| ↓
1 ≤ ϕ(q) for all q ∈ Sn(A).

We will make use of the following fact.

Fact 2.4 ([3]). If (X, d) is a topometric space then any continuous function f :
X → R is uniformly continuous with regards to d.

Proposition 2.5. Fix a complete first-order theory T , distortion system ∆ for T ,
parameter set C, and tuples ā and b̄ with |ā| = n and |b̄| = m.

(i) tp(b̄/C) is δ∆(C)-atomic and tp(ā/Cb̄) is δ∆(Cb̄)-atomic if and only if tp(āb̄/C)
is δ∆(C)-atomic.

(ii) If tp(b̄/C) is d∆,C-atomic and tp(ā/Cb̄) is d∆,Cb̄-atomic, then tp(āb̄/C) is
d∆,C-atomic.

(iii) If tp(āb̄/C) is d∆,C-atomic, then tp(b̄/C) is d∆,C-atomic.
(iv) If ∆ is u.u.c. and tp(āb̄/C) is d∆,C-atomic, then tp(ā/Cb̄) is d∆,Cb̄-atomic.
(v) If tp(b̄/C) is δ∆(C)-atomic or d-atomic, then it is d∆,C-atomic.

Proof. (i): (⇒) : Let ϕ(ȳ) be a C-formula witnessing that tp(b̄/C) is δ∆(C)-atomic
and let ψ(x̄, ȳ) be a C-formula such that ψ(x̄, b̄) witnesses that tp(ā/Cb̄) is δ∆(Cb̄)-
atomic. By the fact above we have that ψ(x̄, ȳ), a function on Sn+m(C), is uniformly
continuous in the metric δ∆(C). Let α : R→ R be a modulus of uniform continuity
for ψ(x̄, ȳ) with regards to δ∆(C), i.e. α is a continuous function with α(0) = 0 such
that for any tuples c̄, ē, ū, v̄, |ψ(c̄, ē)−ψ(ū, v̄)| ≤ α(δ∆(C)(tp(c̄ē/C), tp(ūv̄/C))). We
may assume that α is strictly increasing and in particular invertible.

Consider the formula χ(x̄, ȳ) = ψ(x̄, ȳ) + α(ϕ(ȳ)). Pick ε > 0 with ε < 1 and
let c̄, ē be such that χ(c̄, ē) < ε. This implies that ϕ(ē) < α−1(ε), so δ∆(C)(tp(ē/C),

tp(b̄/C)) < α−1(ε). Let (M,N, R) be a structure witnessing this, i.e.R ∈ cor(M, Cē;
N, Cb̄) and dis∆(R) < α−1(ε). Furthermore assume that c̄ ∈ M as well and let
ā′ ∈ N be such that (c̄, ā′) ∈ R. Now by construction we have that δ∆(C)(tp(ēc̄/C),

tp(ā′b̄/C)) < α−1(ε). This implies that |ψ(c̄, ē) − ψ(ā′, b̄)| < α(α−1(ε)) = ε,
so in particular ψ(ā′, b̄) < 2ε and by construction δ∆(C)(tp(ā′, b̄/C), tp(āb̄/C)) ↓
1 < 2ε. By the triangle inequality this implies that δ∆(C)(tp(c̄ē/C), tp(āb̄/C)) <

2ε+ α−1(ε). Since α is strictly increasing, α−1 is strictly increasing and the func-
tion ε 7→ 2ε + α−1(e) is invertible. Let f be its inverse and now we have that
f(ψ(x̄, ȳ) ↓ 1) is a formula witnessing that tp(āb̄/C) is δ∆(C)-atomic.

(⇐) : Let ϕ(x̄, ȳ) be a C-formula witnessing that tp(āb̄/C) is δ∆(C)-atomic.
Consider the formula ψ(ȳ) = inf x̄ ϕ(x̄, ȳ). To see that this witnesses that tp(b̄/C)
is δ∆(C)-atomic, let χ(ȳ) be a ∆(C)-formula such that |= χ(b̄) ≤ 0. Let b̄′ be a tuple
such that |= ψ(b̄′) ≤ 0. In a sufficiently saturated model there exists a tuple ā′ such
that |= ϕ(ā′b̄′) ≤ 0, so we have that b̄′ ≡C b̄. Now let c̄ be any tuple and assume
that ψ(c̄) < ε ≤ 1. That implies that there exists a tuple ē such that ϕ(ē, c̄) < ε,
so δ∆(C)(tp(āb̄/C), tp(ēc̄/C)) < ε. This implies that δ∆(C)(tp(b̄/C), tp(c̄/C)) < ε

as well, so tp(b̄/C) is δ∆(C)-atomic.
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Finally, consider the formula ϕ(x̄, b̄). This witnesses that tp(ā/Cb̄) is δ∆(Cb̄)-
atomic by the previous corollary and since ∆(Cb̄) is the same set of formulas as
{ϕ(x̄, b̄) : ϕ(x̄, ȳ) ∈ ∆(C)}.

(ii): We will prove a stronger version of this in Lemma 2.6.
(iii): The proof of this is the same as the proof of the corresponding statement

in part (i).
(iv:) If ∆ is u.u.c. then d∆,C and δ∆(C) are uniformly equivalent and d∆,Cb̄ and

δ∆(Cb̄) are uniformly equivalent, so the statement follows from part (i).
(v): This follows from the facts that d∆,C ≤ δ∆(C) and d∆,C ≤ d on Sn(C). �

Compare this proposition to these analogous non-approximate statements:
(i) tp(āb̄/C) is topologically isolated in Sn+m(C) if and only if tp(b̄/C) is

topologically isolated in Sm(C) and tp(ā/Cb̄) is topologically isolated in
Sn(Cb̄).

(ii) If tp(b̄/C) and tp(ā/Cb̄) are d-atomic, then tp(āb̄/C) is d-atomic.
(iii) If tp(āb̄/C) is d-atomic, then tp(b̄/C) is d-atomic.
(v) If tp(b̄/C) is topologically isolated in Sm(C), then it is d-atomic.
Topological isolation in Sn(C) is of course the same thing as δ∆(C)-atomicity

when ∆ is the collection of all formulas.
What fails in the statement ‘tp(āb̄/C) d∆,C-atomic implies tp(b̄/Cā) is d∆,Cā-

atomic’ is just the fact that d∆,Cā will in general be larger than d∆,C on Sm(Cā).
This is the exact same phenomenon that happens with the ordinary d-metric.

A slightly beefier version of Proposition 2.5 part (ii) will be useful later for
‘approximately constructible’ models. We will prove this for a sequence of singletons
for the sake of notational simplicity, but the proof is the same for a sequence of
finite tuples.

Lemma 2.6. Let T be a complete theory, ∆ a distortion system for T , C a param-
eter set, ā a tuple of elements, and {bi}i<ω a sequence of elements. If tp(b<i/C) is
d∆,C-atomic for every i < ω and tp(ā/Cb<ω) is d∆,Cb<ω

-atomic, then tp(āb<i/C)
is d∆,C-atomic for every i < ω.

Proof. For each i < ω, let ϕi(y0, . . . , yi−1) be a [0, 1]-valued C-formula witnessing
that tp(b<i/C) is d∆,C-atomic, and let ψ(x̄, ȳ) be a C-formula such that ψ(x̄, b<ω)
witnesses that tp(ā/Cb<ω) is d∆,Cb<ω -atomic. Since ψ(x̄, ȳ) can be realized as a
uniformly convergent limit of formulas in finitely many variables, we have that
ψ(x̄, ȳ) is uniformly continuous with regards to the metric

d†(x̄ȳ, x̄′ȳ′) = sup
i<ω

2−id∆,C(tp(x̄y<i/C), tp(x̄′y′<i/C)).

Let α be a modulus of uniform continuity for ψ with regards to d†. We may assume
that α is strictly increasing and so in particular invertible. Consider the formulas

χj(x̄, y0, . . . , yj−1) = inf
yj ,yj+1,...

ψ(x̄, ȳ) + sup
i<ω

2−iα(ϕi(y<i))

(despite appearances these are first-order formulas). For any ā′b′<i such that |=
χi(ā

′b′<i) ≤ 0 there is an elementary extension with an ω-tuple b′ib′i+1 . . . such that
|= ψ(ā′, b′<ω) ≤ 0 and |= ϕi(b<i) ≤ 0 for each i < ω, so ā′b′<i ≡C āb<i.

Let β : R → R be a continuous strictly increasing function with β(0) = 0
that witnesses Proposition 1.10 part (i) in this situation, i.e. for every ε > 0 if
there are models M,N |= T both containing C, tuple m̄ ∈ M and n̄, b̄ ∈ N, and
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an R ∈ cor(M, Cm̄;N, Cn̄) with dis∆(R), dN(n̄, b̄) ≤ β(ε), then d∆,C(tp(m̄/C),
tp(n̄/C)) ≤ ε.

Pick ε > 0 with ε ≤ 1 and j < ω and let c̄e<j be a tuple such that

|= χj(c̄, e<j) <
1

2
β−1

(
1

2
ε

)
↓ 2−jβ−1

(
α−1

(
1

2
β−1

(
1

2
ε

))
↓ 2−j−1ε

)
.

Let ejej+1 . . . be a tuple witnessing the infimum in χj(c̄, e<j), so in particular

|= ψ(c̄, e<ω) <
1

2
β−1

(
1

2
ε

)
↓ 2−jβ−1

(
α−1

(
1

2
β−1

(
1

2
ε

))
↓ 2−j−1ε

)
.

We also have that |= 2−jϕj(e<j) < 2−jβ−1(α−1( 1
2β
−1( 1

2ε)) ↓ 2−j−1ε), so

d∆,C(tp(e<k/C), tp(b<j/C)) < β−1

(
α−1

(
1

2
β−1

(
1

2
ε

))
↓ 2−j−1ε

)
.

By Proposition 1.10 part (ii) we can find a triple (M,N, R) such that e<j ∈ M,
b<j ∈ N, R ∈ cor(M, Ce<j ;N, Cn̄), and there is a tuple n̄ ∈ N such that dN(n̄, b<j)
and dis∆(R) are both less than β−1(α−1( 1

2β
−1( 1

2ε)) ↓ 2−j−1ε). We may assume
that all of b<ω is in N.

If we let ā′ ∈ N be a tuple such that (ē, ā′) ∈ R, then we have that

d∆,C(tp(c̄e<k/C), tp(ā′b<k/C)) < α−1

(
1

2
β−1

(
1

2
ε

))
↓ 2−j−1ε,

for each k ≤ j, by Proposition 1.10 part (i). By construction this implies that

d†(c̄e<ω, ā
′b<ω) < α−1

(
1

2
β−1

(
1

2
ε

))
↓ 2−j−1ε.

Now by the choice of α we get that |ψ(c̄, e<ω) − ψ(ā′, b<ω)| < 1
2β
−1( 1

2ε) and in
particular ψ(ā′, b<ω) < β−1( 1

2ε), since ψ(c̄, e<ω) < 1
2β
−1( 1

2ε).
This implies that d∆,Cb<ω

(tp(ā′/Cb<ω), tp(ā/Cb<ω)) < β−1( 1
2ε). Proposition

1.10 now implies that d∆,C(tp(ā′b<j/C), tp(āb<j/C)) < 1
2ε.

Since d†(c̄e<ω, ā′b<ω) < 2−j−1ε, we have by definition that

2−jd∆,C(tp(c̄e<j/C), tp(ā′b<j/C)) < 2−j−1ε

and so d∆,C(tp(c̄e<j/C), tp(ā′b<j/C)) < 1
2ε.

By the triangle inequality we have that d∆,C(tp(c̄e<j/C), tp(āb<j/C)) < 1
2ε +

1
2ε = ε. Since we can do this for any ε > 0 and j < ω, we have that tp(āb<j/C) is
d∆,C-atomic for every j < ω. �

3. Approximate Categoricity

Given an approximate notion of isomorphism it is natural to consider a corre-
sponding notion of approximate categoricity.

Definition 3.1. Fix a theory T and a distortion system ∆ for T .
• T is ∆-κ-categorical if for any two models M,N |= T of density character
κ, a∆(M,N) = 0.

• T is strongly ∆-κ-categorical if for any two models M,N |= T of density
character κ, M ∼∼∼∆ N.
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Of course ∆-κ-categoricity and strong ∆-κ-categoricity are equivalent when ∆
is regular. The motivating examples of distortion systems are regular and certainly
strong ∆-κ-categoricity is the more compelling notion, but all of the results in this
paper easily generalize to what we are calling ∆-κ-categoricity, with no apparent
gain from assuming strong ∆-κ-categoricity and no clear way to characterize strong
∆-κ-categoricity. This, together with the necessity of introducing a weaker version
of ∆-κ-categoricity in Section 3.2, lead us to this naming convention.

Of course a natural question is whether or not this distinction even matters.

Question 3.2. Does there exist a theory T , a distortion system ∆ for T , and an
infinite cardinal κ such that T is ∆-κ-categorical but not strongly ∆-κ-categorical?

3.1. Separable Categoricity. We can restate Ben Yaacov’s generalization of the
Ryll-Nardzewski theorem to the context of perturbations in our language. In this
section we will extend this result to distortion systems in general.

Theorem 3.3 (Ben Yaacov [2]). Let T be a complete theory with non-compact
models in a countable language and ∆ a functional distortion system for T .

• The following are equivalent.
– T is ∆-ω-categorical.
– For every finite tuple of parameters ā and n < ω, every type in Sn(ā)

is weakly d∆-atomic-in-Sn(ā).
– The same but with n restricted to 1.

• If (Sn(T ), d∆) is metrically compact for every n < ω (equivalently if every
∅-type is d∆-isolated), then T is ∆-ω-categorical.

d∆ on S1(ā) is the restriction of d∆ on S1+|ā|(T ) to the subspace corresponding
to S1(ā). This is d̃p in Ben Yaacov’s notation. Note that d∆ on S1(ā) is not the
same thing as d∆,ā on S1(ā). For example, if ∆ is the collection of all formulas, so
that ρ∆ corresponds to isomorphism, then d∆ = d for the type spaces Sn(T ), but
over parameters the topometric space (Sn(ā), d), where d is the ordinary d-metric
on Sn(ā), is not the same topometric space as (Sn(ā), d∆) = (Sn(ā), dSn+|ā|(T )) in
general, where dSn+|ā|(T ) is the d-metric on Sn+|ā|(T ).

Lemma 3.4. Fix a countable first-order theory T and a distortion system ∆ for T .
For any type p(x̄) ∈ Sn(T ) for some n, and any extension q(x̄, ȳ) ∈ Sn+m(T ), there
is a separable model M |= T such that M realizes p and for any n-tuple ā ∈M and
any ε > 0 there is an m-tuple b̄ ∈M such that d∆(q, tp(āb̄)) < d∆(p, tp(ā)) + ε.

Proof. Let M0 be a countable pre-model of T realizing p. Proceed inductively.
At stage i, given Mi, a countable pre-model of T , find Mi+1 � Mi such that for
every n-tuple ā ∈ Mi there is an m-tuple b̄ ∈ Mi+1 such that d∆(q, tp(āb̄)) <
d∆(p, tp(ā)) + 2−i. Note that this is always possible since d∆ has the extension
property.

Now let M be the completion of the union
⋃
i<ωMi. Let ā be an n-tuple in

M. For any ε > 0, find āi ∈ Mi such that d(ā, āi) <
1
3ε and such that 2−i < 1

3ε.
Then by construction there is b̄ ∈ M such that d∆(q, tp(āib̄)) < d∆(p, tp(āi)) +
1
3ε. This implies that d∆(q, tp(āib̄)) < d∆(p, tp(ā)) + 2

3ε, but we also have that
d∆(q, tp(āb̄)) < d∆(q, tp(āib̄)) + d(āib̄, āb̄). Finally d(āib̄, āb̄) = d(āi, ā) < 1

3ε, so
putting this together gets d∆(q, tp(āb̄)) < d∆(q, tp(āib̄)) + ε, as required. �
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Definition 3.5. A structure M is approximately ∆-ω-saturated if for every ā ∈M,
every p ∈ Sn(ā), and every ε > 0, there is b̄ ∈M such that d∆(p, tp(āb̄)) < ε.

When ∆ is the collection of all formulas, a structure is approximately ∆-ω-satu-
rated if and only if it is approximately ω-saturated, hence the redundant sounding
name.

Proposition 3.6. A structure M is approximately ∆-ω-saturated if and only if it
is for 1-types, i.e. for every ā ∈ M, every p ∈ S1(ā), and every ε > 0, there is
b ∈M such that d∆(p, tp(āb)) < ε.

Proof. The ⇒ direction is obvious, so we only need to show that if M is ∆-ω-sat-
urated for 1-types, then it is ∆-ω-saturated.

Let ā ∈ M be a tuple and let p ∈ Sn(ā) be some type. Pick ε > 0. For each i
with 0 < i ≤ n, let pi be the restriction of p to the first i variables.

First find b1 ∈M such that d∆(p1, tp(āb1)) < ε
n .

Now at any stage i ≥ 1, given b1 . . . bi, find qi+1 ∈ S1(āb1 . . . bi) such that
d∆(pi+1, qi+1) = d∆(pi, tp(āb1 . . . bi)). �

Lemma 3.7. If M is approximately ∆-ω-saturated, then for every tuple ā and
every type p(ā, ȳ) ∈ Sn(ā) and ε > 0 there is b̄c̄ ∈ M such that d(ā, b̄) < ε and
δ∆(p, tp(b̄c̄)) < ε.

Proof. Pick ε > 0. Let b̄0 = ā and find c̄0 such that d∆(p, tp(b̄0c̄0)) < 1
2ε. By Propo-

sition 1.10 there exists a type q0 such that δ∆(p, q0) < 1
2ε and d(q0, tp(b̄0c̄0)) < 1

2ε.
Let r0 be a completion of the type {d(b̄0c̄0, x̄ȳ) < 1

2ε, q0(x̄, ȳ)} (i.e. a type in twice
as many variables).

Now at stage i, given b̄ic̄i and ri, find b̄i+1c̄i+1 such that

d∆(ri, tp(b̄ic̄ib̄i+1c̄i+1)) < 2−i−1ε.

So in particular d∆(qi, tp(b̄i+1c̄i+1)) < 2−i−1ε. By Proposition 1.10 there exists a
type qi+1 such that δ∆(qi, qi+1) < 2−i−1ε and d(qi+1, tp(b̄i+1c̄i+1)) < 2−i−1ε. Let
ri+1 be a completion of the type {d(b̄i+1c̄i+1, x̄ȳ) < 2−i−1ε, qi+1(x̄, ȳ)}.

Now by construction {b̄ic̄i}i<ω is a Cauchy sequence in d. Let it limit to b̄c̄. By
construction we have that d(ā, b̄) < ε. {qi}i<ω is also a Cauchy sequence in δ∆.
Let it limit to q. By construction we have that δ∆(p, q) < ε. Furthermore since
d(qi+1, tp(b̄i+1c̄i+1)) < 2−i−1ε, we have that b̄c̄ |= q, so in particular δ∆(p, tp(b̄c̄)) <
ε, as required. �

Proposition 3.8. For any countable theory T (not necessarily complete) and dis-
tortion system ∆ for T , if M,N |= T are separable models that are both ap-
proximately ∆-ω-saturated, then a∆(M,N) is as small as possible, i.e. a∆(M,
N) = δ∆(Th(M),Th(N)). In particular if M ≡ N then a∆(M,N) = 0.

Proof. Pick ε > δ∆(Th(M),Th(N)). Let {m2i}i<ω be an enumeration of a tail-
dense (i.e. every final segment is dense) sequence in M and let {n2i+1}i<ω be a
tail-dense sequence in N. We will construct an almost correlation between M and
N with a back-and-forth argument with the typical continuous modification that
the sequence built will need to ‘slide around’ a little at each stage to make things
line up.
{aji}j≤i<ω will be an array of elements of M and {bji}j≤i<ω will be an array of

elements of N chosen so that for each fixed i, aji and b
j
i are Cauchy sequences in j.

Their limits, aωi and bωi , will be the desired correlation with distortion ≤ ε.



APPROXIMATE CATEGORICITY IN CONTINUOUS LOGIC 13

On stage 0, let a0
0 = m0 and find b00 such that

δ∆(tp(a0
0), tp(b00)) = δ∆(Th(M),Th(N)) < ε.

On odd stage 2k + 1, let b2k+1
i = b2ki for i < 2k + 1 and let b2k+1

2k+1 = n2k+1. By
the induction hypothesis, δ∆(tp(a2k

≤2k), tp(b2k≤2k)) < ε. Let p2k+1 be an extension of
the type tp(a2k

≤2k) such that δ∆(tp(a2k
≤2k), tp(b2k≤2k)) = δ∆(p2k+1, tp(b2k+1

≤2k+1)). Now
by Lemma 3.7 we can find a2k+1

≤2k and a2k+1
2k+1 such that dM(a2k

≤2k, a
2k+1
≤2k ) < 2−k and

with δ∆(p2k+1, tp(a2k+1
≤2k+1)) small enough that δ∆(tp(a2k+1

≤2k+1), tp(b2k+1
≤2k+1)) < ε.

On even stage 2k + 2 we do the same with the roles reversed.
Now clearly for each fixed i, aji and b

j
i are Cauchy sequences in j, so let aωi and

bωi be their limits. Note that dM(aω2k,m2k) ≤ 2−2k+1 and similarly for bω2k+1 and
n2k+1, so we have that {aωi }i<ω is dense in M and {bωi }i<ω is dense in N by the
tail-density of the sequences {m2i} and {n2i+1}. So R = {(aωi , bωi ) : i < ω} is an
almost correlation between M and N.

By induction we have for each j < ω that δ∆(tp(ak≤j), tp(bk≤j)) < ε for all k
such that this quantity is defined. By lower semi-continuity of δ∆ this implies that
δ∆(tp(aω≤j), tp(bω≤j)) ≤ ε for all j < ω. Therefore we have that dis∆(R) ≤ ε as well.

Since we can do this for any ε > δ∆(Th(M),Th(N)), we have that a∆(M,N) ≤
δ∆(Th(M),Th(N)). Since a∆(M,N) ≥ δ∆(Th(M),Th(N)) always holds, we have
a∆(M,N) = δ∆(Th(M),Th(N)), as required. �

Corollary 3.9. If ∆ is a regular distortion system and M,N |= T are approxi-
mately ∆-ω-saturated separable models then ρ∆(M,N) = δ∆(Th(M),Th(N)). In
particular if M ≡ N, then M ∼∼∼∆ N.

Proposition 3.10. For any countable complete theory T and distortion system ∆
for T , if T is ∆-ω-categorical, then every separable model of T is approximately
∆-ω-saturated.

Proof. Fix a separable M |= T . Fix ā ∈ M and p(x̄, ā) ∈ Sm(ā). Let N be the
model for tp(ā) and p guaranteed by the previous lemma. Pick γ > 0. Find δ > 0
according to Proposition 1.10 (ii) with ε < 1

4γ. Without loss assume that δ < 1
4γ.

Let R ∈ acor(M,N) be closed and have dis∆(R) < δ. Find ā′ in the domain of R
such that dM(ā, ā′) < δ and let b̄ ∈ N be such that (ā′, b̄) ∈ R. By passing to an
ℵ1-saturated elementary extension of (M,N, R) and by using Proposition 1.10 we
get that d∆(tp(ā), tp(b̄)) ≤ ε < 1

4γ.
This implies that there exists c̄ ∈ N such that d∆(p, tp(b̄c̄)) < d∆(tp(ā), tp(b̄)) +

1
4γ. Now find c̄′ ∈ N in the range of R such that dN(c̄, c̄′) < 1

4γ. Now we have that
d∆(p, tp(b̄c̄′)) < d∆(p, tp(b̄c̄))+d(c̄, c̄′) and thus d∆(p, tp(b̄c̄′)) < d∆(p, tp(b̄c̄))+ 1

4γ.
Putting this all together gives that d∆(p, tp(b̄c̄′)) < 3

4γ.
Now find ē ∈ M such that (ē, c̄′) ∈ R, so in particular we have that (ā′ē, b̄c̄′) ∈

R. By passing to an ℵ1-saturated elementary extension of (M,N, R) and using
Proposition 1.10 again, we have that d∆(tp(āē), tpb̄c̄′) ≤ ε < 1

4γ. By the triangle
inequality this gives that d∆(p, tp(āē)) < 1

4γ + 3
4γ = γ.

Since we can do this for any separableM |= T , any ā, any p ∈ Sm(ā), and any γ >
0, we have that every separable models of T is approximately ∆-ω-saturated. �

Corollary 3.11. A countable theory T with distortion system ∆ is ∆-ω-categorical
if and only if every separable model is approximately ∆-ω-saturated.
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Proposition 3.12. Fix a countable complete theory T and a distortion system ∆
for T . For any parameters ā and a type p(x̄, ā) ∈ Sn(ā) the following are equivalent:

• For every M |= T containing b̄ ≡ ā and for every ε > 0, there is c̄ ∈ M
such that d∆(p(x̄, b̄), tp(c̄b̄)) < ε.

• p is weakly d∆-atomic-in-Sn(ā).

Proof. The second bullet point clearly implies the first bullet, since if p is weakly
d∆-atomic-in-Sn(ā), then for every ε > 0, intSn(ā)B

d∆

≤ε(p) is non-empty and non-
empty open subsets of type space are always realized.

So assume that the second bullet point fails. This implies that there is an ε > 0
such that intSn(ā)B

d∆

≤ε(p) = ∅. intSn(ā)B
d∆

≤ε(p) is a closed set, so we can build a
pre-model M0 3 ā omitting it. Passing to the completion M = M0, note that any
type realized in M must be in the metric closure under the ordinary d-metric of
the set of types realized in M0, but since d ≥ d∆ this implies that they’re in the
metric closure under d∆ of the set of types realized in M0, so we have that any
type q ∈ Sn(ā) realized in M must have d∆(p, q) ≥ ε, contradicting the first bullet
point. �

Theorem 3.13. For any countable complete theory T and distortion system ∆ for
T ,

(i) T is ∆-ω-categorical if and only if for every tuple of parameters ā and every
n < ω, every p ∈ Sn(ā) is weakly d∆-atomic-in-Sn(ā).

(ii) Same as the previous statement but only considering types in S1(ā).
(iii) If every Sn(T ) is metrically compact relative to d∆, then T is ∆-ω-categor-

ical.

Proof. (i): If T is ∆-ω-categorical then for any finite tuple ā, any type p(x̄, ā),
and any separable model M 3 ā, the condition in the first bullet point of Propo-
sition 3.12 holds (since M is approximately ∆-ω-saturated), i.e. the type must be
‘approximately realized.’ Therefore p must be weakly d∆-atomic-in-Sn(ā).

Conversely, if for every ā and p ∈ Sn(ā), p is weakly d∆-atomic-in-Sn(ā), then
by Proposition 3.12 no type over a tuple of parameters can be ‘approximately
omitted,’ i.e. the first bullet point in Proposition 3.12 always holds. This implies
that every separable model of T is approximately ∆-ω-saturated, therefore T is
∆-ω-categorical.

(ii): Clearly if every p ∈ Sn(ā) is weakly d∆-atomic-in-Sn(ā), then the same is
true restricting n to 1.

So assume that for every finite tuple of parameters ā, every p ∈ S1(ā) is weakly
d∆-atomic-in-S1(ā). It’s clear that the proof of Proposition 3.8 only requires ap-
proximate ∆-ω-saturation for 1-types, so we get that for any two separable models
M,N |= t, a∆(M,N) = 0, i.e. T is ∆-ω-categorical.

(iii): This is enough to imply that every Sn(ā) is metrically compact with regards
to d∆ as well (since d∆ is just the restriction to Sn(ā) as a subspace of Sn+|ā|(T )).
Therefore every p ∈ Sn(ā) is d∆-atomic, and therefore in particular weakly d∆-
atomic. �

Corollary 3.14. If T is a countable theory, ∆ is a distortion system for T , ā is any
tuple of parameters, and T is ∆-ω-categorical, then Tā is D(∆, ā)-ω-categorical, i.e.
for any two separable models M,N |= Tā and ε > 0 there is an almost correlation
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R between M and N such that dis∆(R) < ε and for all (m̄, n̄) ∈ R, |dM(m̄, āM)−
dN(n̄, āN)| < ε.

Proof. Unpacking definitions gives that dD(∆,ā) in Sn(āb̄) is the same thing as d∆

in Sn(āb̄). So we clearly have that Tā is D(∆, ā)-ω-categorical. All we need to do
is verify that the alternative statement of D(∆, ā)-ω-categoricity is equivalent, but
this follows from the definition of D0(∆, ā). �

Note that in particular if ∆ is the collection of all formulas, so that ∆-ω-cate-
goricity corresponds to ω-categoricity, then D(∆, ā)-ω-categoricity is not the same
thing as ω-categoricity for Tā. Rather, it says that given any two separable mod-
els M,N |= Tā, for any ε > 0 there is an isomorphism f : M ∼= N such that
d(f(āM), āN) < ε. Similar weakenings occur when ∆ is a distortion system with
an ‘obvious’ extension to Tā, although in some cases, such as with the Gromov-
Hausdorff distance, the obvious extension is equivalent to D(∆, ā) (in particular
because δ∆ and d∆ are uniformly equivalent).

Recall the definition of the ‘elementary Gromov-Hausdorff distance,’ given in [6].

Definition 3.15. For any L-formula ϕ, let χϕ(x̄) = inf ȳ ϕ(ȳ) + d(x̄, ȳ). χϕ has
the property that it is 1-Lipschitz in any L-structure and furthermore that if ϕ is
1-Lipschitz in every model of T , then T |= χϕ = ϕ. Let eGHK0 = {χϕ : ϕ ∈ L}.
Note that ϕ ∈ eGHK0 for any sentence ϕ.

Let eGHK = eGHK0. ρeGHK(M,N) is the elementary Gromov-Hausdorff-Kadets
distance between M and N.

Corollary 3.16. If a countable theory T is eGHK-ω-categorical, then it is ω-cate-
gorical.

Proof. δeGHK = d and for any type p ∈ Sn(T ) (it is important that there are no
parameters), p is weakly d-atomic if and only if it is d-atomic. Every type in Sn(T )
being d-atomic is equivalent to Sn(T ) being metrically compact, so it follows that
T is ω-categorical. �

It may seem that there is a contradiction here, given the knowledge that ordinary
ω-categoricity isn’t always preserved under adding constants. This stems from the
fact that given a theory T and the corresponding eGHK(T ), eGHK(T )(ā) is not
the same thing as eGHK(Tā) and the difference is related to what happens with
ω-categorical theories that fail to be ω-categorical after adding constants. Witnesses
for ρeGHK(T )(ā)(M,N) < ε for M,N |= Tā are elementary embeddings f : M � C

and g : N � C such that dCH(f(M), g(N)) < ε and dC(f(ā), g(ā)) < ε. On the other
hand witnesses for ρeGHK(Tā)(Mā,Nā) < ε require that f(ā) = g(ā) because in this
case we’re thinking of the big model C as a model of Tā and we need f and g to be
elementary embeddings for Tā, not just T .

We were unable to show the analogous result for uncountable cardinalities but
we were also unable to construct a counterexample, so a natural question arises.

Question 3.17. Does there exist a countable theory T and an uncountable cardi-
nality κ such that T is eGHK-κ-categorical but not κ-categorical?

This question is obviously trivial in single-sorted discrete theories, but there is a
specific case of it with a many-sorted discrete theory that is non-trivial and can be
resolved negatively (i.e. eGHK-κ-categoricity implies κ-categoricity). If we have a
many-sorted discrete theory with sorts {Si}i<ω and we take the metric on sort Si
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to be {0, 2−i}-valued, then the question is non-trivial. This is equivalent to taking
a Morleyized many-sorted language L and letting Li (in the sense of Definition
3.18) be the set of all formulas with free variables in the first i sorts (but, crucially,
we’re implicitly allowing quantification over arbitrarily high sorts). Assume that
such a theory is eGHK-κ-categorical for some uncountable κ. By Corollary 3.39 in
the next section, this implies that it is GHK-λ-categorical for every uncountable
λ (since this is a discrete theory). Therefore it cannot have any Vaughtian pairs.
Now to show that it is actually uncountably categorical we just need to show that
it is ω-stable. What we have is that it is eGHK-ω-stable (as defined in the next
section). Unpacking the definition in this case, this implies that it cannot have
an infinite binary tree whose parameters all come from a finite collection of sorts
(whereas in principle a binary tree in general could have parameters from all of the
sorts). However, by stability and in particular the fact that the sorts are stably
embedded, all of the formulas in the binary tree are definable with parameters from
the sort that the tree is in, so we have that in this case eGHK-ω-stability implies
ω-stability. Therefore the theory is actually uncountably categorical. By the results
of [8], this is enough to resolve Question 3.17 in the context of continuous theories
with totally disconnected type spaces (which include ω-stable ultrametric theories)
since these are bi-interpretable with many-sorted discrete theories.

3.1.1. Counterexamples for Separable Categoricity. The simplest non-trivial exam-
ple of an approximately ω-categorical theory is easiest to describe in terms of a
stratified language, as defined in [6]. We will restate the relevant definition and a
relevant result here.

Definition 3.18. A stratified language is a language L together with a designated
sequence of sub-languages {Li}i<ω whose union is L. (Note that the sub-languages
may have fewer sorts than the full language.)

In the context of a stratified language L, two L-structures M, N are said to be
approximately isomorphic, written M ∼∼∼L N, if M � Li ∼= N � Li for every i < ω.
In general let ρL(M,N) = 2−i where i is the largest such that M � Li ∼= N � Li but
M � Li+1 6∼= N � Li+1, or 0 if no such i exists.

We may drop the subscript L if the relevant stratified language is clear by con-
text.

Proposition 3.19. Let T be a discrete first-order theory (i.e. every predicate is
{0, 1}-valued in every model of T ) and let ∆ be a distortion system for T .

(i) For every finite set S0 ⊆ S there is an ε > 0 such that if dis∆(R) < ε,
then R restricted to the sorts in S0 is the graph of a bijection. For every
predicate symbol P there is an εP > 0 such that whenever dis∆(R) < εP ,
then R is the graph of a bijection that respects R.

(ii) There is a stratification of L such that ρ∆ and ρL are uniformly equivalent.
In particular M ∼∼∼∆ N if and only if M ∼∼∼L N.

Now we can give the counterexample.

Example 3.20. Let L0 = {ai}i<ω∪{b0} and let Ln+1 = Ln∪{bn+1}. Consider the
L-structure in which all of the constants are assigned to different elements and there
are no other elements. The theory of this structure is approximately ω-categorical.
We can describe the distortion system corresponding to this stratified language easily
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as the one generated by ∆0 = {d(x, ai)}i<ω ∪ {2−jd(x, bj)}j<ω, where we’re taking
the metric to be {0, 1}-valued. Let ∆ = ∆0.

This serves as a counterexample to three things. It is an example of a ∆-ω-cat-
egorical theory that is not ω-categorical. It is an example of a theory in a strat-
ified language that is approximately ω-categorical but which does not have an ω-
categorical reduct T � Ln for any n. And finally it is an example of the failure of the
converse of Theorem 3.13 part (iii). The unique 1-type of a non-realized element
is weakly d∆-atomic, but not d∆-atomic, so S1(T ) cannot be metrically compact
with regards to d∆.

A more subtle hope would be that we could eliminate the parameters from The-
orem 3.13. Unfortunately this is impossible in general, but an example is more
complicated.

Example 3.21. A theory T with distortion system ∆ such that for every n < ω,
every types p ∈ Sn(T ) is weakly d∆-atomic, but such that T is not ∆-ω-categorical.

Proof. Let E be a binary relation, let {fi}i<ω be a sequence of unary functions,
and let {ai,j}i,j<ω be an array of constant symbols.

Let L0 = {E} ∪ {fi}i<ω ∪ {a0,0}. For each k < ω, let Lk+1 = Lk ∪ {ai,j}i,j≤k+1.
Finally let L =

⋃
k<ω Lk.

Let M be an L structure with universe ω × (ω + ω). Set (i, j)EM(k, `) if and
only if i = k. Let fk((i, j)) = (i, k) and ai,j = (i, ω + j). Finally let T = Th(M)
and let ∆ be a distortion system equivalent to the stratified language L.

To see that T is not ∆-ω-categorical, let N be an elementary extension of M
that realizes a new E-equivalence class, but only the outputs of the functions fi in
that class. M and N are not ∆-approximately isomorphic since there is nothing to
correlate the constants ai,j in M with in the new equivalence class in N.

To see that for every n < ω and every p ∈ Sn(T ), p is weakly d∆-atomic, let
O be the countable elementary extension of M that realizes infinitely many new
E-equivalence classes and realizes infinitely many elements not equal to any fi(c) or
ai,j in every E-equivalence class. This is the unique countable ω-saturated model
of this theory. We would like to show that the type of any finite tuple of elements
of this model is weakly d∆-atomic. It is enough to consider tuples of the following
form. Fix N < ω. Consider the tuple whose elements are

• The constants ai,j for i, j ≤ N .
• N elements E equivalent to ai,0 for each i ≤ N , but not equal to any fi(c)

for any c.
• N elements not equal to any fi(c) from N distinct E equivalence classes

that contain no elements of M (N2 elements in total).
• The image of all of those elements under fi for i ≤ N .

Let the type of this tuple be pN . Every finitary ∅-type is the type of some
sub-tuple of pN for some N . The restriction of a weakly d∆-atomic type to some
sub-tuple is still d∆-atomic (since projection maps are open and 1-Lipschitz with
regards to d∆). For any k, the type pN � Lk is realized by a tuple in M, and
therefore in any model of T , since M is the prime model. Therefore by Proposition
3.12, pN is weakly d∆-atomic. �

3.2. Inseparable Approximate Categoricity.
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Definition 3.22. For any topological space X and metric d : X2 → R, a (d, ε)-per-
fect tree in X is a family of non-empty closed sets {Fσ}σ∈2<ω such that for any
σ ∈ 2<ω and i < 2, Fσ_i ⊂ intXFσ and dinf(Fσ_0, Fσ_1) > ε.

Definition 3.23. Fix a complete theory T and a distortion system ∆ for T .
• T is ∆-κ-stable if for any parameter setA of size≤ κ, #dc(S1(A), d∆,A) ≤ κ.
• T is ∆-totally transcendental or ∆-t.t. if for any parameter set A there

does not exist a (d∆,A, ε)-perfect tree in S1(A).

Proposition 3.24. Fix a theory T and a distortion system ∆ for T .
(i) If T is ∆-ω-stable, then it is ∆-t.t.
(ii) If T is ∆-t.t., then it is ∆-κ-stable for any κ ≥ |L|.
(iii) If T is countable and ∆-κ-stable for some κ = κω, then it is stable. In

particular a ∆-ω-stable countable theory is stable.

Proof. (i): Assume that for some set of parameters A and some ε > 0 there is a
(d∆,A, ε)-perfect tree {Fσ}σ∈2<ω in S1(A).

Fix σ ∈ 2<ω. Fix p ∈ Fσ_0 and q ∈ Fσ_1. We have by assumption that
d∆,A(p, q) > ε. This implies that there exists a D(∆(A), c̄)-sentence, ϕσ,p,q, such
that |ϕσ,p,q(p)− ϕσ,p,q(q)| > ε. There are open sets U 3 p and V 3 q such that for
all r ∈ U and s ∈ V , |ϕσ,p,q(r) − ϕσ,p,q(s)| > ε. Therefore by compactness there
is a finite collection Σσ of D(∆(A), c̄)-sentences such that for any p ∈ Fσ_0 and
q ∈ Fσ_1 there is a ϕ ∈ Σσ such that |ϕ(p)− ϕ(q)| > ε.

For each σ ∈ 2<ω, let ψσ be a restricted A-formula such that Jψσ ≤ 2
3K ⊆

intS1(A)Fσ and such that Fσ_0, Fσ_1 ⊆ Jψσ < 1
3K. Now let A0 be the collection of

all parameters used in some ϕ ∈ Σσ or ψσ for some σ ∈ 2<ω. Note that A0 is a
countable set of parameters. For each σ ∈ 2<ω, let Gσ = Jψσ ≤ 2

3K and note that
by construction for any σ ∈ 2<ω, and i < 2, Gσ_i ⊆ intS1(A0)Gσ.

To verify that {Gσ}σ∈2<ω is a (d∆,A0 , ε)-perfect tree in S1(A0) we now just
need to verify that d∆,A0(p, q) > ε for any p ∈ Gσ_0 and q ∈ Gσ_1, but this
follows easily from the inclusion of the parameters from Σσ. For any such p, q
there is some sentence ϕ ∈ Σσ such that |ϕ(p) − ϕ(q)| > ε. So we have that
{Gσ} is a (d∆,A0

, ε)-perfect tree. Therefore #dc(S1(A0), d∆,A0
) ≥ 2ℵ0 and T is not

∆-ω-stable.
(ii): Suppose that T fails to be ∆-κ-stable for some κ ≥ |L|. Let A be a collection

of parameters of cardinality ≤ κ such that #dc(S1(A), d∆,A) > κ. This implies that
there is some ε > 0 such that #ent

>ε (S1(A), d∆,A) ≥ κ+.
Let B be a base for the topology of S1(A) of cardinality κ (this exists because

κ ≥ |L|). Define a transfinite sequence of closed subsets.
• X0 = S1(A)
• Xα+1 = Xα \

⋃
{U ∈ B : #ent

>ε (U ∩Xα) ≤ κ}
• Xλ =

⋂
α<λXα, for λ a limit or ∞.

For each U ∈ B, let α(U) be the smallest ordinal such that #ent
>ε (U ∩Xα(U)) ≤ κ

if it exists, and ∞ otherwise. Let β = sup{α(U) : α(U) < ∞}. Since κ+ is
a regular cardinal, we must have that β < κ+. In particular this implies that
Xβ = Xβ+1 = X∞.

Now assume that Xβ = ∅. Let Y be a (> ε)-separated subset of S1(A) of
cardinality κ+ (this must exist because κ+ is a regular cardinal). Since κ+ is
a regular cardinal, there must be some α such that |Y ∩ (Xα \ Xα+1)| = κ+.
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Furthermore since B has cardinality κ this implies that there must be a U ∈ B such
that |Y ∩ (Xα \Xα+1)∩U | = κ+, but this implies that #ent

>ε (U ∩Xα) ≥ κ+, which
is a contradiction. Therefore Xβ is non-empty.

Now Xβ must have the property that for any U ∈ B, #ent
>ε (U ∩Xβ) ≥ κ+, so in

particular in any non-empty open subset of Xβ there exists p, q with d∆,A(p, q) > ε.
Let F∅ = S1(A). For each σ ∈ 2<ω, given Fσ, a closed set whose interior has non-

empty intersection with Xβ , find p, q ∈ Xβ ∩ intS1(A)Fσ such that d∆,A(p, q) > ε.
Find Fσ_0, a closed set such that p ∈ intS1(A)Fσ_0, Fσ_0 ⊂ intS1(A)Fσ, and
such that Fσ_0 ∩ B

d∆,A

≤ε (q) = ∅. Then find a Fσ_1, a closed set such that q ∈
intS1(A)Fσ_1, Fσ_1 ⊂ intS1(A)Fσ, and such that Fσ_1 ∩ F

d∆,A≤ε
σ_0 = ∅. Then by

construction {Fσ}σ∈2<ω is a (d∆,A, ε)-perfect tree, so T is not ∆-t.t.
(iii): The cardinality of a complete metric space of density character λ is always

either λ or λω. This implies that the cardinality of S1(A) for any set of parameters A
with |A| ≤ κ must be ≤ κ, since it’s d∆,A-density character is ≤ κ = κω. Therefore
T is stable with regards to the discrete metric and in particular stable. �

Proposition 3.25. For any theory T and distortion system ∆ for T , if T is ∆-t.t.,
then for any set of parameters A and any closed set F ⊆ Sn(A), d∆(A)-atomic-in-F
types are dense in F .

Proof. This is follows from Corollary 3.8 of [3]. �

Proposition 3.26. For any countable first-order theory T , there are models of any
density character that only realize separably many types over countable parameter
sets.

Proof. This follows from Proposition 3.37 of [1]. �

Corollary 3.27. If a countable theory T with distortion system ∆ is ∆-κ-cate-
gorical for uncountable κ, then T is ∆-ω-stable, so in particular it is ∆-t.t. and
∆-κ-stable for every κ ≥ ℵ0.

Proof. Assume that T is not ∆-ω-stable. Then there is some countable parameter
set A and an ε > 0 such that there is an uncountable (d∆,A > ε)-separated set of
types P in S1(A). Let M be a model of density character κ that realizes A and
every element of P . Let N be a model of T of density character κ such that for any
countable B ⊂ N, the set of types in S1(B) realized in N is separable with respect
to the d-metric.

Find a δ > 0 small enough that δ∆(tp(ab), tp(ce)) < δ then |d(a, b)−d(c, e)| < ε
9 .

Find an almost correlation R betweenM andN with dis∆(R) < ε
9 ↓ δ. By replacing

each element of A with a Cauchy sequence if necessary we may assume that A is in
the domain of R (extending each element of P so that they are still realized in M,
note that they are still (d∆,A > ε)-separated). Let B be some ω-tuple of elements
of N correlated with A by R.

Now for each p ∈ P , find a type p′ with d(p, p′) < ε
3 such that p′ is still realized

in M but by something in the domain of R. P ′ is now (d∆,A >
ε
3 )-separated. Now

for each p′ ∈ P , let q ∈ S1(B) be a type such that q is realized in N by something
correlated to a realization of p′ in M. Let Q be the collection of these types.

By unpacking definitions we have that for any countable parameter set E, the
metric d∆,E on S1(E) is equivalent to the metric δωD(∆,c) restricted to S1(E) as a
subspace of Sω(Tc), where the ω variables correspond to an enumeration of E, c is



20 JAMES HANSON

a fresh constant symbol corresponding to the free variables in the types in S1(E),
and Tc is the (incomplete) theory of T with an extra constant (and no new axioms).

Pick q0, q1 ∈ Q, corresponding to p′0, p
′
1 ∈ P ′. The choice of δ implies that

δωD(∆,c)(p
′
0, q0) < ε

9 and δωD(∆,c)(q1, p
′
1) < ε

9 . Since

d∆,A(p′0, p
′
1) ≤ δωD(∆,c)(p

′
0, q0) + δωD(∆,c)(q0, q1) + δωD(∆,c)(q1, p

′
1),

d∆,A(p′0, p
′
1) ≤ δωD(∆,c)(p

′
0, q0) + d(q0, q1) + δωD(∆,c)(q1, p

′
1),

this implies that d(q0, q1) > ε
3 −

2ε
9 = ε

9 . So Q is (d > ε
9 )-separated which is a

contradiction. Therefore T is ∆-ω-stable. �

Definition 3.28. For a countable theory T with distortion system ∆, a model
M |= T is ∆-κ-saturated if for any A ⊆ M with |A| < κ, M realizes a d∆,A-dense
subset of S1(A).

If #dcM = κ, we say that M is ∆-saturated.

When ∆ is the collection of all formulas, a structure is ∆-κ-saturated if and only
if it is κ-saturated.

At this point there is a notable omission. Given M,N |= T , both ∆-saturated
with the same uncountable density character, it’s unclear whether or not we can
conclude ρ∆(M,N) = 0. If we could then we would be able to prove the full analog
of Morley’s theorem for distortion systems.

Proposition 3.29. If T is a complete, countable, ∆-κ-stable theory with non-
compact models for ∆, a distortion system for T , then for every uncountable regular
λ ≤ κ, T has a ∆-λ-saturated model of density character κ.

Proof. Let M0 be any pre-model of density character and cardinality κ. Form a
continuous elementary chain {Mi}i<λ of length κ of pre-models of density character
and cardinality κ such that for each i, Mi+1 realizes a d∆,Mi

-dense set of types in
S1(Mi).

Finally let M be the completion of the union. Clearly #dcM = κ. Any subset
A of M of cardinality < λ is in the closure of some Mi. Then S1(MiA) = S1(Mi),
so we have that a d∆,MiA-dense subset of S1(MiA) is realized in M. This implies
that a d∆,A-dense subset of S1(A) is realized in M, and so M is ∆-λ-saturated. �

Corollary 3.30. If a countable theory T with distortion system ∆ is ∆-κ-categor-
ical for some κ ≥ ℵ1, then every model of T of density character κ is ∆-saturated.

Proof. Let M be a model of T of density character κ ≥ ℵ1. For any regular
uncountable λ ≤ κ, let N be a ∆-λ-saturated model of T of density character κ.
Let A ⊂ M be any subset of cardinality < λ. Pick p ∈ S1(A) and ε > 0. Find a
δ > 0 small enough that δ∆(tp(ab), tp(ce)) < δ then |d(a, b) − d(c, e)| < ε

3 . Find
an almost correlation R between M and N with distortion < ε

3 ↓ δ. Every element
of A is a metric limit of points in the domain of R. Let A′ be a set containing a
sequence limiting to each element of A (note that we still have |A′| < λ) and let
p′ be some extension of p to S1(A′). Go to a large enough elementary extension of
(M,N, R) that p′ is realized over A′ by some m and such that R is a correlation.
Let B ⊆ N be correlated to A′ by R so that |B| < λ, and let e be correlated to m
in the elementary extension. Let q be tp(e/B).

By ∆-λ-saturation, there is some type r ∈ S1(B) such that N realizes r with
some e′ and d∆,B(q, r) < ε

5 . Find e′′ such that d(e′, e′′) < ε
3 and such that e′′ is

correlated to some m′ ∈M by R.
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Just like in the proof of Corollary 3.27, we have that

d∆,A(p′, tp(m′/A′)) ≤ δωD(∆(A),c)(p
′, q)

+ d(e′, e′′)

+ δωD(∆(A),c)(tp(e′′/B), tp(m′/A′)),

where we’re thinking of A and B as ω-tuples when computing δωD(∆(A),c). So we
have that d∆,A(p′, tp(m′/A′)) < ε

3 + ε
3 + ε

3 = ε.
Since we can do this for any A with |A| < λ, any p ∈ S1(A), and any ε > 0, we

have that M is ∆-λ-saturated. Since we can do this for any regular λ ≤ κ, we have
that M is ∆-saturated. �

Definition 3.31. We say that T is weakly ∆-κ-categorical if every model of T of
density character κ is ∆-saturated.

It’s immediate from Proposition 3.26 that a weakly ∆-κ-categorical theory for
some uncountable κ is ∆-ω-stable.

Definition 3.32. Let T be a complete theory and ∆ a distortion system for T .
• For any parameter set A, a ∆-construction over A is a sequence {bi}i<λ

such that for every i < λ, tp(bi/Ab<i) is d∆,Ab<i
-atomic.

• A model M |= T is ∆-constructible over A if A ⊆ M and there is an
enumeration of a dense subset of M which is a ∆-construction over A.

Proposition 3.33. For any complete theory T , ∆, a distortion system for T , and
parameter set A, if {bi}i<λ is a ∆-construction over A, then for any finite tuple
b̄ ∈ {bi}, tp(b̄/A) is d∆,A-atomic.

Proof. We have already done most of the work in Proposition 2.5 and Lemma
2.6. We just need to apply it inductively. Assume that we’re shown that for any
i0 < i1 < · · · < ik < α that tp(bi0bi1 . . . bik/A) is d∆,A-atomic. Let j0 < j1 <
· · · < j` ≤ α be any tuple of indices and consider bj0bj1 . . . bjk . By Proposition
2.5 we know there exists a countable set of elements of the form bi with i < α
such that tp(bj0bj1 . . . bjk/AB) is d∆,A-atomic. By Lemma 2.6 this implies that
tp(bj0bj1 . . . bjk/A) is d∆,A-atomic, as required. �

Proposition 3.34. Fix T , a countable complete ∆-ω-stable theory with non-compact
models, for ∆, a distortion system for T . If M |= T with #dcM = κ ≥ ℵ1, then
for any regular λ ≤ κ, M has arbitrarily large elementary extensions N such that
for any A ⊂M with |A| < λ the set of types realized by N in S1(A) is contained in
the d∆,A-closure of the set of types realized by M in S1(A).

Proof. Fix regular λ ≤ κ. Find an ε > 0 such that #ent
>ε (M, d) ≥ λ, which must

exist because λ is regular. Let Q be a maximal (>ε)-separated subset of M of
cardinality ≥ λ. Let X ⊂ S1(M) be the set of all types p such that for every open
neighborhood U 3 p, |U ∩Q| ≥ λ. Note that X is a closed set and by compactness
is non-empty. Also note that since Q was chosen to be maximal, M ∩ X = ∅,
since for any realized type p there is some a ∈ M such that d(p, a) < ε, which is
an open neighborhood of p whose intersection with Q has cardinality 1, which is in
particular less than λ.

Now since T is ∆-ω-stable, d∆,M-atomic-in-X types are dense in X. Let p be
some d∆,M-atomic-in-X type. Let a be a realization of that type. By Proposition
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3.25, there exists a ∆-constructible model N over Ma (specifically, d∆,A-atomic
types are dense in every S1(A)). Note that N is a proper elementary extension of
M.

Let b be some element of N and let E ⊂ M be some set of parameters of
cardinality µ < λ. Since N is ∆-constructible over Ma, tp(b/Ma) is d∆,Ma-atomic.
Let ϕ(x, m̄, a) be a formula (with m̄ possibly an ω-tuple) such thatN |= ϕ(b, m̄, a) ≤
0 and for every type q ∈ S1(Ma), d∆,Ma(q, tp(b/Ma)) ≤ ϕ(q, m̄, a). In particular
what this means is that if we think of c as a fresh constant symbol, then for any
D(∆(Ma), c)-sentence ψ(c, m̄, a), |ψN(b, m̄, a) − ψ(q, m̄, a)| ≤ ϕ(q, m̄, a). We may
assume that m̄ ∈ E. Let {ψ0

i (c, ēi)}i<µ be a collection of D(∆(E), c)-sentences
which are dense in the uniform norm (treating c as a variable). Then for each
i < µ, let ψi(c, ēi) = |ψ0

i (c, ēi) − ψ0,N
i (b, ēi)| and note that each ψi(c, ēi) is also a

D(∆(E), c)-sentence. Now we have that for each i < µ and for any q ∈ S1(Ma),
N |= supx ψi(x, ēi) ·− ϕ(x, m̄, a) and of course N |= infx ϕ(x, m̄, a), so these two
statements are parts of tp(a/M) = p.

Let χ be aM-formula such that χ(p) = 0 and for every q ∈ X, d∆,M(p, q) ≤ χ(q),
so in particular for any D(∆(M), c)-sentence θ(c, m̄), we have |θ(p, m̄)− θ(q, m̄)| ≤
χ(q). Again by extending E we may assume that χ is an E-formula.

Now pick δ > 0, and find a γ > 0 such that if d∆,M(tp(a′b′/M), tp(a′′b′′/M)) ≤ γ
then |ϕ(b′, m̄, a′)−ϕ(b′′, m̄, a′′)| < δ

3 and note that this implies that if d∆,M(tp(a′/M),

tp(a′′/M)) ≤ γ then for any b′, |ϕ(b′, m̄, a′) − ϕ(b′, m̄, a′′)| < δ
3 and also the same

thing for formulas of the form supx ψi(x, ēi) ·− ϕ(x, m̄, y). Consider the sets

H−1 = Q ∩ Jχ < γK \
s

inf
x
ϕ(x, m̄, y) <

δ

2

{

and

Hi = Q ∩ Jχ < γK \
s

sup
x
ψi(x, ēi) ·− ϕ(x, m̄, y) <

δ

2

{

for i < µ (as subsets of S1(M)). Note that since Jχ < γK is an open neighborhood
of p, it must be the case that |Q ∩ Jχ < γK| ≥ λ. Now assume that |Hi| is ≥ λ.
This implies that X ∩ clS1(M)Hi 6= ∅, so in particular there is some q ∈ X such
that χ(q) ≤ γ and yet either infx ϕ(x, m̄, q) ≥ δ

2 or supx ψi(x, ēi) ·− ϕ(x, m̄, q) ≥ δ
2 ,

which contradicts the choice of γ, so it must be the case that |Hi| < λ for every i
with −1 ≤ i < µ. Therefore since λ is a regular cardinal we must have that∣∣∣∣∣∣Q ∩ Jχ < γK ∩

s
inf
x
ϕ(x, m̄, y) <

δ

2

{
∩
⋂
i<µ

s
sup
x
ψi(x, ēi) ·− ϕ(x, m̄, y) <

δ

2

{
∣∣∣∣∣∣ ≥ λ,

so there exists some a′ ∈ Q such that M |= infx ϕ(x, m̄, a′) < δ
2 and supx ψi(x, ēi)

·− ϕ(x, m̄, a′) < δ
2 for each i < µ. Let b′ be an element of M such that M |=

ϕ(b′, m̄, a′) < δ
2 . Then we have that for each i < µ, M |= ψi(b

′, ēi) ·−ϕ(b′, m̄, a′) < δ
2 ,

so together this implies that M |= ψi(b
′, ēi) < δ for every i < µ. By the choice of

the ψi’s, this implies that d∆,E(tp(b′/E), tp(b/E)) ≤ δ. Since we can do this for
any δ > 0, we have that the set of types in S1(E) realized in N is in the d∆,E-metric
closure of the set of types in S1(E) realized in M.

Now we are free to iterate this process to form arbitrarily large elementary ex-
tensions N′ � M such that for any set of parameters E ⊂ M with |E| < λ, if N′
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realizes some type in S1(E), then it is in the d∆,E-metric closure of the types in
S1(E) realized in M. �

Corollary 3.35. Fix T a countable complete theory with non-compact models and
∆, a distortion system for T . For any κ ≥ ℵ1, if T is weakly ∆-κ-categorical, then
it is weakly ∆-λ-categorical for every λ ≥ ℵ1 with λ ≤ κ.

Proof. Assume that T fails to be weakly ∆-κ-categorical. Let M be a model of
density character κ that fails to be ∆-κ-saturated. LetA ⊂M be a set of parameters
with |A| < κ such that for some type p ∈ S1(A) and some ε > 0, every type
q ∈ S1(A) realized in M has d(p, q) ≥ ε. Then by the previous proposition M has
arbitrarily large elementary extensions with the same property, so in particular for
any λ > κ, T has a model of density character λ that fails to be ∆-saturated, so T
is not weakly ∆-λ-categorical. �

Theorem 3.36. Fix T a countable complete theory with non-compact models and
∆, a distortion system for T . For any κ ≥ ℵ1, if T is weakly ∆-κ-categorical, then
it is weakly ∆-λ-categorical for every λ ≥ ℵ1.

Proof. By the previous Corollary 3.35, we know that the collection of uncountable
cardinalities for which a theory T is weakly ∆-κ-categorical is always an initial
segment of the uncountable cardinals. Assume that it is not all of them. Find κ
large enough that T is not weakly ∆-κ-categorical and such that for any λ < κ,
λω < κ and such that cf(κ) ≥ ω1 (such a cardinal can always be found).

Let M be a model of T of cardinality κ which is not ∆-saturated. Let A ⊂ M
be a set of parameters with |A| < κ such that for some type p ∈ S1(A) and some
ε > 0, every type q ∈ S1(A) realized in M has d∆,A(p, q) ≥ ε (i.e. A witnesses that
M is not ∆-saturated). Since for any superset A′ ⊇ A, the natural restriction map
(S1(A′), d∆,A′) → (S1(A), d∆,A) is 1-Lipschitz, we can freely pass to a larger set
of parameters and preserve this condition. So we may assume that |A| = |A|ω by
passing to a larger parameter set if necessary (we can do this since we have ensured
that λω < κ for any λ < κ). Let λ = |A|. Since T is ∆-ω-stable, it is stable and so
in particular λ-stable.

Find sufficiently small ε > 0 such that we can find {bi}i<λ+ , a (>ε)-separated
sequence of elements of M. By Proposition 4.17 of [1] there exists (in the monster
model) an array {cji}i<λ+,j<ω such that d(cji , c

j+1
i ) < 2−j , such that for each j < ω

there is a sub-sequence I ⊆ λ+ such that {cji}i<λ+ ≡A {bi}i∈I , and such that the
sequence of limits {cωi }i<λ+ is an A-indiscernible sequence. Let C = {cωi }i<ω.

Let Σ be a countable dense subset of the collection of finitary D(∆, x) formulas
(where x is being treated as the fresh constant symbol). Formulas in Σ are of the
form ϕ(x, ȳ). The important thing is that Σ has the property that for any set
of parameters E, d∆,E(tp(f0/E), tp(f1/E)) = supϕ∈Σ,ē∈E |ϕ(f0, ē)− ϕ(f1, ē)|. We
may assume that Σ is closed under ϕ 7→ (ϕ ·− r) for each rational r.

(∗) Note that for each restricted AC-formula ϕ(x, ā, c̄) such that |= infx ϕ(x, ā,
c̄) ≤ 0, there is an A-formula ψϕ(−,ā)(x, āϕ(−,ā,c̄)) with ψ ∈ Σ such that p(x) `
ψϕ(−,ā,c̄)(x, āϕ(−,ā)) ≤ 0 and such that{

ϕ(x, ā, c̄) <
1

2
, ψϕ(−,ā,c̄)(x, āϕ(−,ā,c̄)) >

ε

2

}
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is consistent. This holds because every type realized in M has d∆,A-distance ≥ ε
from p and because we can approximate C with something of the form {bi}i∈I for
some I ⊆ λ+, which is a set of elements in M.

Now let A0 = ∅, and for each n < ω, given An, let An+1 be the collection of
all a’s occurring in some tuple of the form āϕ(−,ā,c̄) where ϕ(x, ā, c̄) is a restricted
AnC-formula. Finally let Aω =

⋃
n<ω An. Clearly Aω is a countable set.

Now by construction we have that condition (∗) holds with Aω replacing A. Also
note that C is still an indiscernible sequence over Aω (because Aω ⊆ A). Let C ′
be an extension of C to an indiscernible sequence of length ω1. Now let N be a
∆-constructible model over AωC ′. Note that #dcN = ℵ1. If q is the restriction
of p to Aω, we would like to argue that for every type r ∈ S1(Aω) realized in N,
d∆,Aω

(q, r) ≥ ε
2 . Assume that this is false and that there is some e ∈ N such

that d∆,A(q, tp(e/Aω)) ≤ δ < ε
2 . By construction, tp(e/AωC

′) is d∆,AωC′-atomic.
This implies that there is a restricted formula χ(x, ā, c̄) such that |= χ(e, ā, c̄) ≤ 0
and for any f if |= χ(f, ā, c̄) < 1

2 , then d∆,A(tp(e/AωC
′), tp(f/AωC

′)) ≤ ε
2 − δ. In

particular this implies that d∆,A(tp(f/AωC), q) ≤ ε
2 . Therefore for every A-formula

η(x, ā) with η ∈ Σ such that q(x) ` η(x, ā) ≤ 0, we have that |= η(f, ā) ≤ ε
2 . The

fact
∀x
(
χ(x, ā, c̄) <

1

2
→ η(x, ā) ≤ ε

2

)
is an elementary property of c̄. In particular, it can be expressed as a closed
condition. By indiscernibility this is true of every tuple c̄′ ∈ C with the same order
type as c̄, but this is inconsistent with the modified condition (∗) (replacing A with
Aω) above, since this implies that {χ(x, ā, c̄′) < 1

2 , ψχ(−,ā,c̄′)(x, āχ(−,ā,c̄′)) >
ε
2} is

inconsistent (by setting η(x, ā) to ψχ(−,ā,c̄′)(x, āχ(−,ā,c̄′))). Therefore no such e can
exist and for any type r ∈ S1(Aω) realized in N, d∆,Aω (q, r) ≥ ε

2 . Therefore N is
not ∆-saturated and T is not weakly ∆-ℵ1-categorical.

But this contradicts our assumption, so there is no largest uncountable κ such
that T is weakly ∆-κ-categorical and in fact T is weakly ∆-κ-categorical for all
uncountable κ. �

Question 3.37. If T is weakly ∆-κ-categorical for some κ ≥ ℵ1, does it follow that
T is ∆-κ-categorical?

In the particular case of a discrete theory with a stratified language we can
resolve this positively.

Proposition 3.38. Suppose ∆ is a distortion system for some complete discrete
theory T equivalent to some stratified language L and suppose that M,N |= T are
∆-saturated models of the same cardinality, then they are ∆-approximately isomor-
phic.

Proof. For each n < ω, M and N are saturated as Ln-structures, therefore they are
isomorphic as Ln-structures. Thus they are ∆-approximately isomorphic. �

Corollary 3.39. Suppose ∆ is a distortion system for some complete discrete
theory T equivalent to some stratified language L. If T is ∆-κ-categorical for some
uncountable κ then for every uncountable λ, T is ∆-λ-categorical.

3.3. Some Examples and the Relationship between Different Notions
of Categoricity. This section is a case study of the relationship between ordi-
nary categoricity and Lipschitz and Gromov-Hausdorff approximate categoricity
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ω1 Lip-ω1 GH-ω1 None
ω Trivial Unknown Unknown Trivial
Lip-ω Ex. 3.41 Ex. 3.47 Unknown Ex. 3.44
GH-ω Ex. 3.42 Ex. 3.48 Ex. 3.49 Ex. 3.43
None Trivial Ex. 3.45 Ex. 3.46 Trivial

Table 1. Known combinations of separable and inseparable or-
dinary, Lipschitz, and Gromov-Hausdorff categoricity for metric
space theories.

in the theories of metric spaces. The results are summarized in the Table 1,
where ‘κ ∈ {ω, ω1}’ means κ-categorical, ‘Lip-κ’ means Lip-κ-categorical and not
κ-categorical, ‘GH-κ’ means GH-κ-categorical and not Lip-κ-categorical, and ‘none’
means not GH-κ-categorical. It’s not hard to prove that δLip uniformly dominates
δGH and that therefore Lip-κ-categoricity implies GH-κ-categoricity. The boxes
labeled ‘Trivial’ are trivial in the sense that it is very easy to encode discrete struc-
tures in finite languages as metric spaces [7], and to verify that such structures
fall in the corresponding groups here. Of course we haven’t proven that ∆-ω1-
categoricity is equivalent to ∆-κ-categoricity for all uncountable κ, but needless to
say if we had a counterexample we would have mentioned it by now.

‘Unknown’ indicate combinations that are not currently known to be possi-
ble. There seems to be a general phenomenon where the combination of ordinary
ω-categoricity and strictly approximate ω1-categoricity is impossible. In the case
of theories with a {0, 1}-valued metric (although allowing [0, 1]-valued predicates),
ω-categoricity implies that the ∅-type spaces are all finite, so any such theory is
interdefinable with a purely discrete theory. That said a distortion system for such
a theory could still be non-trivial if the theory does not admit quantifier elimination
to a finite language. For any ω-categorical discrete theory that admits quantifier
elimination to a finite language, all distortion systems are uniformly equivalent to
isomorphism, so here we clearly have that ∆-ω1-categoricitiy implies ω1-categoricity.
This suggests a pair of purely discrete questions.

Question 3.40. (i) Does there exist a discrete theory T in a stratified language L
such that T is ω-categorical but only approximately ω1-categorical?

(ii) Does there exist a discrete theory T in a stratified language L =
⋃
i<ω Li

such that T is ω-categorical, T � Li is ω1-categorical for every i < ω, but T is not
ω1-categorical?

Note that a positive answer for part (ii) would imply a positive answer for part
(i). An example of (ii) would have to be rather strange. It is easy to show that
such a T cannot have any Vaughtian pairs, so T must fail to be ω-stable. Since it
is ω-categorical this would imply that it is strictly stable. There is really only one
known strictly stable ω-categorical theory, constructed by Hrushovski, but it has
a finite language, whereas an example of what we need would necessarily have an
infinite language.

Now we turn to the examples in the chart. The following two examples are very
similar. The idea is to encode a sequence of constants in a structureless set in
increasingly ‘harder to detect’ ways.
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Example 3.41. A metric space theory that is strictly Lip-ω-categorical and ω1-cat-
egorical.

Description. Let M be a metric space whose universe is ω × {0, 1} with d((i, j),
(k, `)) = 1 if i 6= k and d((i, 0), (i, 1)) = 1

2 + 2−i−2. Let T = Th(M). �

Example 3.42. A metric space theory that is strictly GH-ω-categorical and ω1-cat-
egorical.

Description. Let M be a metric space whose universe is ω × {0, 1} with d((i, j),
(k, `)) = 1 if i 6= k and d((i, 0), (i, 1)) = 2−i−1. Let T = Th(M). �

The next two examples are also similar to each other.

Example 3.43. A metric space theory that is strictly GH-ω-categorical and not
GH-ω1-categorical.

Description. Let M be a metric space whose universe is [0, 1
2 ]×{0, 1} with d((x, i),

(y, j)) = 1 if x 6= y and d((x, 0), (x, 1)) = x. Let T = Th(M). �

Example 3.44. A metric space theory that is strictly Lip-ω-categorical and not
GH-ω1-categorical.

Description. Let M be a metric space whose universe is [ 1
4 ,

1
2 ]×{0, 1} with d((x, i),

(y, j)) = 1 if x 6= y and d((x, 0), (x, 1)) = x. Let T = Th(M). �

The following Examples 3.45 and 3.46 are the prototypes for the subsequent
Examples 3.47, 3.48, and 3.49. The idea is to encode as a metric space a structure
that is Z-chains with maps into [−1, 1] of the form cos(n+ θ). Any two such chains
are ‘approximately isomorphic’ regardless of their values of θ, since 1 radian is an
irrational rotation.

Example 3.45. A metric space theory that is not GH-ω-categorical and is strictly
Lip-ω1-categorical.

Description. Let M be a metric space whose universe is Z × {0, 1} with d((n, i),
(m, j)) = 1 if |n−m| > 1, d((n, i), (n+1, j)) = 1

2 , and d((n, 0), (n, 1)) = 1
4 + 1

8 cos(n).
Let T = Th(M). �

Example 3.46. A metric space theory that is not GH-ω-categorical and is strictly
GH-ω1-categorical.

Description. Let M be a metric space whose universe is Z × {0, 1} with d((n, i),
(m, j)) = 1 if |n−m| > 1, d((n, i), (n+1, j)) = 1

2 , and d((n, 0), (n, 1)) = 1
8 + 1

8 cos(n).
Let T = Th(M). �

Now we modify the previous examples with ‘increasingly hard to detect’ con-
stants, analogous to Examples 3.41 and 3.42. This forces the separable model to
have infinitely many Z-chains.

Example 3.47. A metric space theory that is strictly Lip-ω-categorical and strictly
Lip-ω1-categorical.

Description. Let M be a metric space whose universe is N× Z× 0, 1 with
• d((a, n, i), (b,m, j)) = 1 if a 6= b or if a = b and |n−m| > 1,
• d((a, n, i), (a, n+ 1, j)) = 1

2 ,
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• d((a, n, 0), (a, n, 1)) = 1
4 + 1

8 cos(n) if n 6= 0, and
• d((a, 0, 0), (a, 0, 1)) = 1

4 + 1
8 + 2−a−4.

Let T = Th(M). �

Example 3.48. A metric space theory that is strictly GH-ω-categorical and strictly
Lip-ω1-categorical.

Description. LetM be a metric space whose universe is (N×Z×0, 1)∪(N×{0}×{2})
with

• d((a, n, i), (b,m, j)) = 1 if a 6= b or if a = b and |n−m| > 1,
• d((a, n, i), (a, n+ 1, j)) = 1

2 ,
• d((a, n, 0), (a, n, 1)) = 1

4 + 1
8 cos(n) if n 6= 0,

• d((a, 0, 0), (a, 0, 1)) = 1
4 + 1

8 ,
• d((a, 0, 0), (a, 0, 2)) = 1

4 + 1
8 + 2−a−4, and

• d((a, 0, 1), (a, 0, 2)) = 2−a−4.
Let T = Th(M). �

Example 3.49. A metric space theory that is strictly GH-ω-categorical and strictly
GH-ω1-categorical.

Description. LetM be a metric space whose universe is (N×Z×0, 1)∪(N×{0}×{2})
with

• d((a, n, i), (b,m, j)) = 1 if a 6= b or if a = b and |n−m| > 1,
• d((a, n, i), (a, n+ 1, j)) = 1

2 ,
• d((a, n, 0), (a, n, 1)) = 1

8 + 1
8 cos(n) if n 6= 0,

• d((a, 0, 0), (a, 0, 1)) = 1
8 + 1

8 ,
• d((a, 0, 0), (a, 0, 2)) = 1

8 + 1
8 + 2−a−4, and

• d((a, 0, 1), (a, 0, 2)) = 2−a−4.
Let T = Th(M). �

If we try to use this construction to fill in the missing Lip-ω-categorical and
GH-ω1-categorical square by taking Example 3.46 and adding encoded constants in
the style of Example 3.47, what we get is a theory that is only GH-ω-categorical.

Note that these last 5 are also examples showing that a ∆-ω1-categorical theory
need not be unidimensional, since they contain many orthogonal types. It’s even
possible to modify this idea to get a discrete theory in a stratified language that
is approximately uncountably categorical and yet not unidimensional (rather than
using an irrational rotation of the circle along Z-chains, use an ‘irrational rotation’
of the 2-adic integers along Z-chains, or, roughly equivalently, the structure N
together with predicates Ui for each i < ω such that Ui(n) is true if and only if the
ith binary digit of n is 1), but curiously these examples seem to be limited to having
trivial geometry in their types. There are also examples of strictly approximately
uncountably categorical discrete theories with non-trivial geometries (such as the
theory of the vector space Fωp together with a sequence of predicates encoding
projections onto the first ω Fp factors, with the obvious stratification), but these
seem to be unidimensional. This suggests a question.

Question 3.50. If T is a discrete theory in a stratified language L which is approx-
imately uncountably categorical and T has minimal types with non-trivial geometry,
does it follow that T is unidimensional?
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Another natural question, which is related to Questions 3.40 and 3.50, arises
from the observation that all of these examples are superstable.

Question 3.51. If T is (weakly) ∆-κ-categorical for some uncountable κ, does it
follow that T is superstable?
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