Skolemization in Continuous Logic

James Hanson

University of Wisconsin-Madison

November 12, 2019 UW Logic Seminar

A discrete theory T is Skolemized if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))].$

A discrete theory T is Skolemized if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))].$

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

A discrete theory T is Skolemized if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))].$

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

Step I: Pass to the complete expansion, M[#] (i.e., add every subset of Mⁿ for every n < ω as a predicate), and note that a complete expansion is always Skolemized.

A discrete theory T is Skolemized if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))].$

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

- Step I: Pass to the *complete expansion*, $M^{\#}$ (i.e., add every subset of M^n for every $n < \omega$ as a predicate), and note that a complete expansion is always Skolemized.
- Step II:

A discrete theory T is Skolemized if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))].$

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

- Step I: Pass to the *complete expansion*, $M^{\#}$ (i.e., add every subset of M^n for every $n < \omega$ as a predicate), and note that a complete expansion is always Skolemized.
- Step II: Forcing and Shoenfield absoluteness.

A discrete theory T is Skolemized if for every formula $\varphi(\bar{x}, y)$ there is a definable function $f(\bar{x})$ such that $T \models \forall \bar{x} [\exists y \varphi(\bar{x}, y) \rightarrow \varphi(\bar{x}, f(\bar{x}))].$

Consider the following terrible proof that Skolemization is possible in discrete logic: Take a theory T with model M.

Step I: Pass to the complete expansion, M[#] (i.e., add every subset of Mⁿ for every n < ω as a predicate), and note that a complete expansion is always Skolemized.</p>

Step II: Forcing and Shoenfield absoluteness. Argue that if a theory T has an expansion $T' \supseteq T$ that is Skolemized, then there is an intermediate theory T'' with $T' \supseteq T'' \supseteq T$ such that T'' is already Skolemized and such that $|\mathcal{L}| = |\mathcal{L}''|$.

• The symbol d instead of =.

- The symbol d instead of =.
- To each predicate symbol P (including d), we assign a bound $r_P > 0$.
- To each predicate or function symbol s (other than d), we assign a modulus ω_s : ℝ⁺ → ℝ⁺, satisfying ω_s(x) → 0 as x → 0.

- The symbol d instead of =.
- To each predicate symbol P (including d), we assign a bound $r_P > 0$.
- To each predicate or function symbol s (other than d), we assign a modulus $\omega_s : \mathbb{R}^+ \to \mathbb{R}^+$, satisfying $\omega_s(x) \to 0$ as $x \to 0$.

Given a metric signature \mathcal{L} , an \mathcal{L} -structure, M, is a complete metric space (M, d^M) , of diameter $\leq r_d$, with the following data:

- The symbol d instead of =.
- To each predicate symbol P (including d), we assign a bound $r_P > 0$.
- To each predicate or function symbol s (other than d), we assign a modulus $\omega_s : \mathbb{R}^+ \to \mathbb{R}^+$, satisfying $\omega_s(x) \to 0$ as $x \to 0$.

Given a metric signature \mathcal{L} , an \mathcal{L} -structure, M, is a complete metric space (M, d^M) , of diameter $\leq r_d$, with the following data:

If P is an n-ary predicate symbol, then $P^M: M^n \to [-r_P, r_P]$ which is ω_P -uniformly continuous.

- The symbol d instead of =.
- To each predicate symbol P (including d), we assign a bound $r_P > 0$.
- To each predicate or function symbol s (other than d), we assign a modulus $\omega_s : \mathbb{R}^+ \to \mathbb{R}^+$, satisfying $\omega_s(x) \to 0$ as $x \to 0$.

Given a metric signature \mathcal{L} , an \mathcal{L} -structure, M, is a complete metric space (M, d^M) , of diameter $\leq r_d$, with the following data:

- If P is an n-ary predicate symbol, then $P^M: M^n \to [-r_P, r_P]$ which is ω_P -uniformly continuous.
- If f is an $n\text{-}{\rm ary}$ function symbol, then $f^M:M^n\to M$ which is $\omega_f\text{-}{\rm uniformly}$ continuous.

- The symbol d instead of =.
- To each predicate symbol P (including d), we assign a bound $r_P > 0$.
- To each predicate or function symbol s (other than d), we assign a modulus $\omega_s : \mathbb{R}^+ \to \mathbb{R}^+$, satisfying $\omega_s(x) \to 0$ as $x \to 0$.

Given a metric signature \mathcal{L} , an \mathcal{L} -structure, M, is a complete metric space (M, d^M) , of diameter $\leq r_d$, with the following data:

- If P is an n-ary predicate symbol, then $P^M: M^n \to [-r_P, r_P]$ which is ω_P -uniformly continuous.
- If f is an $n\text{-}{\rm ary}$ function symbol, then $f^M:M^n\to M$ which is $\omega_f\text{-}{\rm uniformly}$ continuous.
- If c is a constant symbol, then $c^M \in M$.

Terms are as in discrete logic. *Open and closed formulas*¹ are defined inductively.

 $^1\mbox{Apologies}$ to anyone who learned logic from Shoenfield or Chang and Keisler.

■ $P\bar{t} \Box r$ and $P\bar{t} \Box Q\bar{s}$ are open formulas for $\Box \in \{<, >, \neq\}$ and are closed formulas for $\Box \in \{\leq, \geq, =\}$.

- $P\bar{t} \Box r$ and $P\bar{t} \Box Q\bar{s}$ are open formulas for $\Box \in \{<, >, \neq\}$ and are closed formulas for $\Box \in \{\leq, \geq, =\}$.
- Let φ 's be open formulas and χ 's be closed formulas.
 - $\chi \to \varphi$, $\neg \chi$, $\varphi \land \varphi'$, $\varphi \lor \varphi'$, and $\bigvee_{i < \omega} \varphi_i$ are open formulas.
 - $\varphi \to \chi$, $\neg \varphi$, $\chi \land \chi'$, $\chi \lor \chi'$, and $\bigwedge_{i < \omega} \chi_i$ are closed formulas.

- $P\bar{t} \Box r$ and $P\bar{t} \Box Q\bar{s}$ are open formulas for $\Box \in \{<, >, \neq\}$ and are closed formulas for $\Box \in \{\leq, \geq, =\}$.
- Let $\varphi{'}{\rm s}$ be open formulas and $\chi{'}{\rm s}$ be closed formulas.
 - $\chi \to \varphi$, $\neg \chi$, $\varphi \land \varphi'$, $\varphi \lor \varphi'$, and $\bigvee_{i < \omega} \varphi_i$ are open formulas.
 - $\varphi \to \chi$, $\neg \varphi$, $\chi \land \chi'$, $\chi \lor \chi'$, and $\bigwedge_{i < \omega} \chi_i$ are closed formulas.
 - $\exists v \varphi$ and $\forall v \varphi$ are open formulas.
 - $\partial v\chi$ and $\forall v\chi$ are closed formulas.

- $P\bar{t} \Box r$ and $P\bar{t} \Box Q\bar{s}$ are open formulas for $\Box \in \{<, >, \neq\}$ and are closed formulas for $\Box \in \{\leq, \geq, =\}$.
- Let $\varphi{'}{\rm s}$ be open formulas and $\chi{'}{\rm s}$ be closed formulas.
 - $\chi \to \varphi$, $\neg \chi$, $\varphi \land \varphi'$, $\varphi \lor \varphi'$, and $\bigvee_{i < \omega} \varphi_i$ are open formulas.
 - $\varphi \to \chi$, $\neg \varphi$, $\chi \land \chi'$, $\chi \lor \chi'$, and $\bigwedge_{i < \omega} \chi_i$ are closed formulas.

■ $\exists v \varphi$ and $\forall v \varphi$ are open formulas.

• $\partial v\chi$ and $\forall v\chi$ are closed formulas.

The semantic interpretation of any standard logical symbol is standard.

¹Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

•
$$M \models \forall x \varphi(\bar{a}, x)$$
 if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \partial x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

•
$$M \models \forall x \varphi(\bar{a}, x)$$
 if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.

• $M \models \partial x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

•
$$M \models \forall x \varphi(\bar{a}, x)$$
 if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.

•
$$M \models \partial x \chi(\bar{a}, x)$$
 if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

Examples:

• $\forall y(\mathrm{d} x y < \varepsilon \to \mathrm{d} x y = 0)$, x is isolated within distance ε .

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \partial x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

- $\forall y (dxy < \varepsilon \rightarrow dxy = 0)$, x is isolated within distance ε .
- ∃xyz∀w(χ(w) → dxw < δ ∨ dyw < δ ∨ dzw < δ), χ can be covered by 3 open balls of radius δ (in every model).

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \partial x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

- $\forall y(\mathrm{d} xy < \varepsilon \to \mathrm{d} xy = 0)$, x is isolated within distance ε .
- ∃xyz∀w(χ(w) → dxw < δ ∨ dyw < δ ∨ dzw < δ), χ can be covered by 3 open balls of radius δ (in every model).
- $\forall x \partial y (Dy = 0 \land dxy = Dx)$, D is the distance predicate of a set.

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \partial x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

- $\forall y(\mathrm{d} xy < \varepsilon \rightarrow \mathrm{d} xy = 0)$, x is isolated within distance ε .
- ∃xyz∀w(χ(w) → dxw < δ ∨ dyw < δ ∨ dzw < δ), χ can be covered by 3 open balls of radius δ (in every model).
- $\forall x \partial y (Dy = 0 \land dxy = Dx)$, D is the distance predicate of a set.
- $\forall x \partial y [Fxy = 0 \land \forall z (dyz = Fxz)]$, F defines a function.

The only non-standard symbols are strong universal quantification, $\forall x \varphi$, and weak existential quantification, $\exists x \chi$:

- $M \models \forall x \varphi(\bar{a}, x)$ if for all $b \in N \succeq M$, $N \models \varphi(\bar{a}, b)$.
- $M \models \partial x \chi(\bar{a}, x)$ if there exists $b \in N \succeq M$, $N \models \chi(\bar{a}, b)$.

- $\forall y(\mathrm{d} xy < \varepsilon \rightarrow \mathrm{d} xy = 0)$, x is isolated within distance ε .
- ∃xyz∀w(χ(w) → dxw < δ ∨ dyw < δ ∨ dzw < δ), χ can be covered by 3 open balls of radius δ (in every model).
- $\forall x \partial y (Dy = 0 \land dxy = Dx)$, D is the distance predicate of a set.
- $\forall x \partial y [Fxy = 0 \land \forall z (dyz = Fxz)]$, F defines a function.
- $\bigwedge_{i < \omega} (\varphi_i(x, \bar{z}) \to \chi_i(y, \bar{z}))$, x and y satisfy the same formulas over \bar{z} , where (φ_i, χ_i) is a 'dense' sequence of formulas satisfying $\varphi_i(w, \bar{z}) \models \chi_i(w, \bar{z})$. (\mathcal{L} countable.)

- For each closed formula χ , let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}.$
- For each open formula φ , let $[\varphi] = \{p \in S_{\bar{x}}(T) : \neg \varphi \notin p\}.$

- For each closed formula χ , let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}.$
- For each open formula φ , let $[\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \}.$

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds.

- For each closed formula χ , let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}.$
- For each open formula φ , let $[\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \}.$

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds.

For any open set $U \subseteq S_{\bar{x}}(T)$, there is an open formula φ such that $U = [\varphi]$ iff U is an F_{σ} set (i.e., a Σ_2^0 set).

- For each closed formula χ , let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}.$
- For each open formula φ , let $[\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \}.$

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds.

- For any open set $U \subseteq S_{\bar{x}}(T)$, there is an open formula φ such that $U = [\varphi]$ iff U is an F_{σ} set (i.e., a Σ_2^0 set).
- Likewise $[\chi]$ are precisely the zerosets (i.e., the closed G_{δ} / Π_2^0 sets).

- For each closed formula χ , let $[\chi] = \{ p \in S_{\bar{x}}(T) : \chi \in p \}.$
- For each open formula φ , let $[\varphi] = \{ p \in S_{\bar{x}}(T) : \neg \varphi \notin p \}.$

The sets $[\varphi]$ form a base of a compact Hausdorff topology on $S_{\bar{x}}(T)$, even if we restrict to finitary formulas with rational bounds.

For any open set $U \subseteq S_{\bar{x}}(T)$, there is an open formula φ such that $U = [\varphi]$ iff U is an F_{σ} set (i.e., a Σ_2^0 set).

Likewise $[\chi]$ are precisely the zerosets (i.e., the closed G_{δ} / Π_2^0 sets).

If $\mathcal L$ is countable, these exhaust the open and closed sets, respectively.

Let X be a topological spaces. An (X-valued) formulas (on \bar{x}) is a continuous function $f: S_{\bar{x}}(T) \to X$.

Let X be a topological spaces. An (X-valued) formulas (on \bar{x}) is a continuous function $f: S_{\bar{x}}(T) \to X$.

Formulas in discrete logic are equivalent to $\{0,1\}$ -valued formulas.

Let X be a topological spaces. An (X-valued) formulas (on \bar{x}) is a continuous function $f: S_{\bar{x}}(T) \to X$.

- Formulas in discrete logic are equivalent to $\{0,1\}$ -valued formulas.
- If you squint, open and closed formulas are equivalent to S-valued formulas, where S is the Sierpiński space.

Let X be a topological spaces. An (X-valued) formulas (on \bar{x}) is a continuous function $f: S_{\bar{x}}(T) \to X$.

- Formulas in discrete logic are equivalent to $\{0,1\}$ -valued formulas.
- If you squint, open and closed formulas are equivalent to S-valued formulas, where S is the Sierpiński space.
- R-valued formulas are equivalent to the typical notion of formula in continuous logic.

Let X be a topological spaces. An (X-valued) formulas (on \bar{x}) is a continuous function $f: S_{\bar{x}}(T) \to X$.

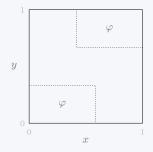
- Formulas in discrete logic are equivalent to $\{0,1\}$ -valued formulas.
- If you squint, open and closed formulas are equivalent to S-valued formulas, where S is the Sierpiński space.
- R-valued formulas are equivalent to the typical notion of formula in continuous logic.
- If F and G are \mathbb{R} -valued formulas, then expressions like $F\bar{x} < r$ and $F\bar{x} + G\bar{y} = G\bar{z}$ have interpretations as open or closed formulas. We will write these freely.

 Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).

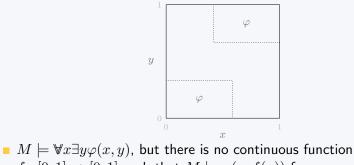
- Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).
- It's far too much to ask for while preserving the metric:

- Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).
- It's far too much to ask for while preserving the metric: Let M be a structure whose universe is [0,1] with the standard metric and with a unary predicate I such that $I^M(x) = x$.

- Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).
- It's far too much to ask for while preserving the metric: Let M be a structure whose universe is [0, 1] with the standard metric and with a unary predicate I such that $I^M(x) = x$.
- \blacksquare There is a formula $\varphi(x,y)$ that looks like this:



- Adding a discrete metric and Skolemizing naïvely works for some applications (Ehrenfeucht-Mostowski models).
- It's far too much to ask for while preserving the metric: Let M be a structure whose universe is [0,1] with the standard metric and with a unary predicate I such that $I^M(x) = x$.
- \blacksquare There is a formula $\varphi(x,y)$ that looks like this:



 $f:[0,1] \to [0,1]$ such that $M \models \varphi(x,f(x))$ for every x.

If T is a Skolemized theory then for any set of parameters $A, \, \mathrm{dcl}\, A$ is a model of T.

If T is a Skolemized theory then for any set of parameters A, dcl A is a model of T. In discrete logic this is equivalent to being Skolemized:

If T is a Skolemized theory then for any set of parameters A, dcl A is a model of T. In discrete logic this is equivalent to being Skolemized:

For any formula φ(x, y), for every type p ∈ S₁(T), let a ⊨ p. If ∃yφ(a, y), then since dcl{a} ⊨ T there must be a b ∈ dcl{a} such that φ(a, b). Some formula ψ(a, y) witnesses that b ∈ dcl{a}. By compactness there's a finite list of these formulas that work for any type p and we can patch these togther to form a Skolem function.

If T is a Skolemized theory then for any set of parameters A, dcl A is a model of T. In discrete logic this is equivalent to being Skolemized:

For any formula φ(x, y), for every type p ∈ S₁(T), let a ⊨ p. If ∃yφ(a, y), then since dcl{a} ⊨ T there must be a b ∈ dcl{a} such that φ(a, b). Some formula ψ(a, y) witnesses that b ∈ dcl{a}. By compactness there's a finite list of these formulas that work for any type p and we can patch these togther to form a Skolem function.

Definition

Fix a complete theory T. Let $M \models T$ and $A \subseteq M$. The definable closure of A, $\operatorname{dcl} A$, is the set of all $b \in M$ such that for some $\overline{a} \in A$ and some \mathbb{R} -valued formula F, we have $M \models \forall x(\operatorname{d} xb = F\overline{a}x)$.

If T is a Skolemized theory then for any set of parameters A, dcl A is a model of T. In discrete logic this is equivalent to being Skolemized:

For any formula φ(x, y), for every type p ∈ S₁(T), let a ⊨ p. If ∃yφ(a, y), then since dcl{a} ⊨ T there must be a b ∈ dcl{a} such that φ(a, b). Some formula ψ(a, y) witnesses that b ∈ dcl{a}. By compactness there's a finite list of these formulas that work for any type p and we can patch these togther to form a Skolem function.

Definition

Fix a complete theory T. Let $M \models T$ and $A \subseteq M$. The definable closure of A, $\operatorname{dcl} A$, is the set of all $b \in M$ such that for some $\overline{a} \in A$ and some \mathbb{R} -valued formula F, we have $M \models \forall x(\operatorname{d} xb = F\overline{a}x)$.

Definition (H.)

A theory T is weakly Skolemized if for any $A \subseteq M \models T$, $dcl A \preceq M$.

If T is a Skolemized theory then for any set of parameters A, dcl A is a model of T. In discrete logic this is equivalent to being Skolemized:

For any formula φ(x, y), for every type p ∈ S₁(T), let a ⊨ p. If ∃yφ(a, y), then since dcl{a} ⊨ T there must be a b ∈ dcl{a} such that φ(a, b). Some formula ψ(a, y) witnesses that b ∈ dcl{a}. By compactness there's a finite list of these formulas that work for any type p and we can patch these togther to form a Skolem function.

Definition

Fix a complete theory T. Let $M \models T$ and $A \subseteq M$. The definable closure of A, $\operatorname{dcl} A$, is the set of all $b \in M$ such that for some $\overline{a} \in A$ and some \mathbb{R} -valued formula F, we have $M \models \forall x(\operatorname{d} xb = F\overline{a}x)$.

Definition (H.)

A theory T is weakly Skolemized if for any $A \subseteq M \models T$, $dcl A \preceq M$.

There are theories that are weakly Skolemized but not Skolemized.

James Hanson (UW Madison)

Skolemization in Continuous Logic

What does weak Skolemization mean?

Assume T is weakly Skolemized. Pick an open formula $\varphi(\bar{x},y).$

By weak Skolemization, for any \bar{a} , if $\exists y \varphi(\bar{a}, y)$, then there is an \mathbb{R} -valued formula $F(\bar{x}, y)$ such that $F(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ satisfying $\varphi(\bar{a}, b)$.

- By weak Skolemization, for any ā, if ∃yφ(ā, y), then there is an ℝ-valued formula F(x̄, y) such that F(ā, y) is the distance predicate of a singleton {b} satisfying φ(ā, b).
- This is a property of $tp(\bar{a})$, but once again different types may require different formulas.

- By weak Skolemization, for any \bar{a} , if $\exists y \varphi(\bar{a}, y)$, then there is an \mathbb{R} -valued formula $F(\bar{x}, y)$ such that $F(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ satisfying $\varphi(\bar{a}, b)$.
- This is a property of $tp(\bar{a})$, but once again different types may require different formulas.
- For each \mathbb{R} -valued formula F, the set of parameters for which it is the distance predicate of a singleton is given by the closed formula $\partial z[F\bar{x}z = 0 \land \forall y(\mathrm{d}yz = F\bar{x}y)].$

- By weak Skolemization, for any ā, if ∃yφ(ā, y), then there is an ℝ-valued formula F(x̄, y) such that F(ā, y) is the distance predicate of a singleton {b} satisfying φ(ā, b).
- This is a property of $tp(\bar{a})$, but once again different types may require different formulas.
- For each \mathbb{R} -valued formula F, the set of parameters for which it is the distance predicate of a singleton is given by the closed formula $\partial z[F\bar{x}z = 0 \land \forall y(\mathrm{d}yz = F\bar{x}y)].$
- Therefore we have a covering of a compact Hausdorff space, $S_{\bar{x}}(T)$, by zerosets (i.e., closed G_{δ} / Π_2^0 sets), specifically $[\neg \exists y \varphi(\bar{x}, y)]$ and the domains of definable partial Skolem functions for φ .

Question

Does there exist a κ such that:

(*) for any compact Hausdorff space X and any cover $\{F_i\}_{i \in I}$ of X by closed G_{δ} sets there is a subcover $J \subseteq I$ such that $|J| \leq \kappa$?

Question

Does there exist a κ such that:

(*) for any compact Hausdorff space X and any cover $\{F_i\}_{i \in I}$ of X by closed G_{δ} sets there is a subcover $J \subseteq I$ such that $|J| \leq \kappa$?

Theorem (Usuba)

A cardinal κ has property (*) if and only if it is the first ω_1 -strongly compact cardinal. In particular, it is consistent that no such κ exists.

ω_1 -Strongly Compact Cardinals

Overview of Large Cardinals

We don't actually need large cardinals.

Step II: Bringing the Cardinality Down The Structure of Weakly Skolemized Theories

• Let $F\bar{x}y$ be an \mathbb{R} -valued formula such that for some parameters \bar{a} , $F\bar{a}y$ is the distance predicate of a singleton.

- Let $F\bar{x}y$ be an \mathbb{R} -valued formula such that for some parameters \bar{a} , $F\bar{a}y$ is the distance predicate of a singleton.
- Consider the formula

$$\alpha_{F,\varepsilon}(\bar{x}) \equiv \exists y \left[F\bar{x}y < \frac{\varepsilon}{2} \land \forall z \left(|\mathrm{d}yz - F\bar{x}z| < \frac{\varepsilon}{2} \right) \right].$$

- Let $F\bar{x}y$ be an \mathbb{R} -valued formula such that for some parameters \bar{a} , $F\bar{a}y$ is the distance predicate of a singleton.
- Consider the formula

$$\alpha_{F,\varepsilon}(\bar{x}) \equiv \exists y \left[F\bar{x}y < \frac{\varepsilon}{2} \land \forall z \left(|\mathrm{d}yz - F\bar{x}z| < \frac{\varepsilon}{2} \right) \right].$$

• We have that $\alpha_{F,\varepsilon}(\bar{a})$, and while $\alpha_{F,\varepsilon}(\bar{e})$ may not guarantee that $F\bar{e}y$ is the distance predicate of a singleton, it does give that it *approximately* selects out a unique element to within a distance of ε .

Let Y be a set. An *almost function*, f, on Y is a partial function on $X \times Y$ for some set X such that for every $y \in Y$ there is an $x \in X$ such that f(x, y) is defined.

Let Y be a set. An *almost function*, f, on Y is a partial function on $X \times Y$ for some set X such that for every $y \in Y$ there is an $x \in X$ such that f(x, y) is defined.

Definition

An X-indexed continuous family of \mathbb{R} -valued formulas $F: X \times S_{\bar{y}z}(T) \to \mathbb{R}$ defines a definable almost function if for any \bar{a} there is $t \in X$ such that $F_t \bar{a}z$ is the distance predicate of a singleton. We want to show that weak Skolemization is witnessed by almost functions. We'll need this:

Lemma

If T is weakly Skolemized, then for any $\varepsilon > 0$ and any $\varphi(\bar{x}, y)$ and $\chi(\bar{x})$, open and closed formulas, such that $\forall \bar{x}(\chi(\bar{x}) \to \exists y \varphi(\bar{x}, y))$, there is a finite sequence of \mathbb{R} -valued formulas F_0, \ldots, F_n and real numbers $\delta_0, \ldots, \delta_n < \varepsilon$ such that for any \bar{a} , if $\chi(\bar{a})$, then there is an $i \leq n$ such that $\alpha_{F_i,\delta_i}(\bar{a})$ and $\forall y(F_i \bar{a}y \leq \delta_i \to \varphi(\bar{a}, y))$.

We want to show that weak Skolemization is witnessed by almost functions. We'll need this:

Lemma

If T is weakly Skolemized, then for any $\varepsilon > 0$ and any $\varphi(\bar{x}, y)$ and $\chi(\bar{x})$, open and closed formulas, such that $\forall \bar{x}(\chi(\bar{x}) \to \exists y \varphi(\bar{x}, y))$, there is a finite sequence of \mathbb{R} -valued formulas F_0, \ldots, F_n and real numbers $\delta_0, \ldots, \delta_n < \varepsilon$ such that for any \bar{a} , if $\chi(\bar{a})$, then there is an $i \leq n$ such that $\alpha_{F_i,\delta_i}(\bar{a})$ and $\forall y(F_i \bar{a} y \leq \delta_i \to \varphi(\bar{a}, y))$.

Recall that $\alpha_{F_i,\delta_i}(\bar{x}) \equiv \exists y \left[F_i \bar{x}y < \frac{\delta_i}{2} \land \forall z \left(|dyz - F_i \bar{x}z| < \frac{\delta_i}{2} \right) \right]$. These conditions at the end mean that $F_i \bar{a}y$ is 'within δ_i of a distance predicate for a singleton' and any y for which $F_i \bar{a}y$ is sufficiently small is a witness to $\exists y \varphi(\bar{a}, y)$.

Since T is weakly Skolemized, for each $p \in [\chi]$ we can find an \mathbb{R} -valued formula F_p such that if $\bar{a} \models p$, then $F_p \bar{a} y$ is the distance predicate of a singleton whose element witnesses $\exists y \varphi(\bar{a}, y)$. We can also find a $\delta_p > 0$ with $\delta_p < \varepsilon$, such that $\forall y(F_p \bar{a} y \leq \delta_p \rightarrow \varphi(\bar{a}, y))$, since φ is an open formula.

- Since T is weakly Skolemized, for each $p \in [\chi]$ we can find an \mathbb{R} -valued formula F_p such that if $\bar{a} \models p$, then $F_p \bar{a} y$ is the distance predicate of a singleton whose element witnesses $\exists y \varphi(\bar{a}, y)$. We can also find a $\delta_p > 0$ with $\delta_p < \varepsilon$, such that $\forall y (F_p \bar{a} y \leq \delta_p \rightarrow \varphi(\bar{a}, y))$, since φ is an open formula.
- Now let $\beta_p(\bar{x}) = \alpha_{F_p,\delta_p}(\bar{x}) \land \forall y(F_p \bar{x}y \leq \delta_p \rightarrow \varphi(\bar{x},y))$. Clearly by construction $p \models \beta_p$.

- Since T is weakly Skolemized, for each $p \in [\chi]$ we can find an \mathbb{R} -valued formula F_p such that if $\bar{a} \models p$, then $F_p \bar{a} y$ is the distance predicate of a singleton whose element witnesses $\exists y \varphi(\bar{a}, y)$. We can also find a $\delta_p > 0$ with $\delta_p < \varepsilon$, such that $\forall y(F_p \bar{a} y \leq \delta_p \rightarrow \varphi(\bar{a}, y))$, since φ is an open formula.
- Now let $\beta_p(\bar{x}) = \alpha_{F_p,\delta_p}(\bar{x}) \land \forall y(F_p \bar{x}y \leq \delta_p \rightarrow \varphi(\bar{x},y))$. Clearly by construction $p \models \beta_p$.
- $\{[\beta_p]\}_{p \in [\chi]}$ is an open cover of $[\chi]$. By compactness it has a finite subcover indexed by $\{p_0, p_1, \ldots, p_n\}$. Now $F_i = F_{p_i}$ and $\delta_i = \delta_{p_i}$ are the required formulas and numbers.

Theorem (H.)

If T is weakly Skolemized, then for any open formula $\varphi(\bar{x}, y)$ such that $T \models \forall \bar{x} \exists y \varphi(\bar{x}, y)$, there is a 2^{ω} -indexed continuous family of \mathbb{R} -valued formulas $F : 2^{\omega} \times S_{\bar{x}y}(T) \to \mathbb{R}$ that defines an almost function which produces witnesses for $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ (i.e., for any \bar{a} there is $t \in 2^{\omega}$ such that $F_t \bar{a} y$ is the distance predicate of a witness).

Theorem (H.)

If T is weakly Skolemized, then for any open formula $\varphi(\bar{x}, y)$ such that $T \models \forall \bar{x} \exists y \varphi(\bar{x}, y)$, there is a 2^{ω} -indexed continuous family of \mathbb{R} -valued formulas $F : 2^{\omega} \times S_{\bar{x}y}(T) \to \mathbb{R}$ that defines an almost function which produces witnesses for $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ (i.e., for any \bar{a} there is $t \in 2^{\omega}$ such that $F_t \bar{a} y$ is the distance predicate of a witness).

Proof Idea. Use the lemma to get a finite list of approximate Skolem functions that approximately work. Build a finitely branching tree whose paths are increasingly better approximate Skolem functions. Use these to build the almost Skolem function.

Theorem (H.)

If T is weakly Skolemized, then for any open formula $\varphi(\bar{x}, y)$ such that $T \models \forall \bar{x} \exists y \varphi(\bar{x}, y)$, there is a 2^{ω} -indexed continuous family of \mathbb{R} -valued formulas $F : 2^{\omega} \times S_{\bar{x}y}(T) \to \mathbb{R}$ that defines an almost function which produces witnesses for $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ (i.e., for any \bar{a} there is $t \in 2^{\omega}$ such that $F_t \bar{a} y$ is the distance predicate of a witness).

Proof Idea. Use the lemma to get a finite list of approximate Skolem functions that approximately work. Build a finitely branching tree whose paths are increasingly better approximate Skolem functions. Use these to build the almost Skolem function.

Proof. We can find an open formula $\varphi'(\bar{x}, y)$ and a closed formula $\eta(\bar{x}, y)$ such that $[\varphi'] \subseteq [\eta] \subseteq [\varphi]$, $\forall \bar{x} \exists y \varphi'(\bar{x}, y)$, and $\forall \bar{x} \partial y \eta(\bar{x}, y)$. Since $[\chi]$ is a closed and a subset of $[\varphi]$, we can find an r > 0 such that $\forall \bar{x} y \bar{z} w(\chi(\bar{x}, y) \land d(\bar{x}y, \bar{z}w) \leq r \rightarrow \varphi(\bar{y}, z))$.

Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_{\varnothing} = \varphi'$, $[\chi_{\varnothing}] = S_{\bar{x}}(T)$, and $\varepsilon_{\varnothing} = \frac{1}{2}r$.

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_{\varnothing} = \varphi'$, $[\chi_{\varnothing}] = S_{\bar{x}}(T)$, and $\varepsilon_{\varnothing} = \frac{1}{2}r$.
- Given $(\varphi_{\sigma}, \chi_{\sigma}, \varepsilon_{\sigma})$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_{\sigma}(\bar{x}) \rightarrow \exists y \varphi_{\sigma}(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_{\sigma}$ to get $F_{\sigma \frown 0}, \ldots, F_{\sigma \frown n_{\sigma}}$ and $\delta_{\sigma \frown 0}, \ldots, \delta_{\sigma \frown n_{\sigma}} < \varepsilon_{\sigma}$.

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_{\varnothing} = \varphi'$, $[\chi_{\varnothing}] = S_{\bar{x}}(T)$, and $\varepsilon_{\varnothing} = \frac{1}{2}r$.
- Given $(\varphi_{\sigma}, \chi_{\sigma}, \varepsilon_{\sigma})$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_{\sigma}(\bar{x}) \rightarrow \exists y \varphi_{\sigma}(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_{\sigma}$ to get $F_{\sigma \frown 0}, \ldots, F_{\sigma \frown n_{\sigma}}$ and $\delta_{\sigma \frown 0}, \ldots, \delta_{\sigma \frown n_{\sigma}} < \varepsilon_{\sigma}$.
- Let $\beta_{\sigma \frown i}$ be as in the proof of the lemma. (Recall: $[\beta_{\sigma \frown i}]$ is the set of types for which $F_{\sigma \frown i}$ works as an approx. Skolem function for φ_{σ} .)

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_{\varnothing} = \varphi'$, $[\chi_{\varnothing}] = S_{\bar{x}}(T)$, and $\varepsilon_{\varnothing} = \frac{1}{2}r$.
- Given $(\varphi_{\sigma}, \chi_{\sigma}, \varepsilon_{\sigma})$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_{\sigma}(\bar{x}) \rightarrow \exists y \varphi_{\sigma}(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_{\sigma}$ to get $F_{\sigma \frown 0}, \ldots, F_{\sigma \frown n_{\sigma}}$ and $\delta_{\sigma \frown 0}, \ldots, \delta_{\sigma \frown n_{\sigma}} < \varepsilon_{\sigma}$.
- Let $\beta_{\sigma \frown i}$ be as in the proof of the lemma. (Recall: $[\beta_{\sigma \frown i}]$ is the set of types for which $F_{\sigma \frown i}$ works as an approx. Skolem function for φ_{σ} .)
- The sets $[\beta_{\sigma \frown i}]$ cover $[\chi_{\sigma}]$. Let $\{\chi_{\sigma \frown i}\}_{i \le n_{\sigma}}$ be a sequence of closed formulas such that $[\chi_{\sigma \frown i}] \subseteq [\beta_{\sigma \frown i}]$ and such that $\bigcup_{i \le n_{\sigma}} [\chi_{\sigma \frown i}] \supseteq [\chi_{\sigma}]$ (such formulas always exist).

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_{\varnothing} = \varphi'$, $[\chi_{\varnothing}] = S_{\bar{x}}(T)$, and $\varepsilon_{\varnothing} = \frac{1}{2}r$.
- Given $(\varphi_{\sigma}, \chi_{\sigma}, \varepsilon_{\sigma})$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_{\sigma}(\bar{x}) \rightarrow \exists y \varphi_{\sigma}(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_{\sigma}$ to get $F_{\sigma \frown 0}, \ldots, F_{\sigma \frown n_{\sigma}}$ and $\delta_{\sigma \frown 0}, \ldots, \delta_{\sigma \frown n_{\sigma}} < \varepsilon_{\sigma}$.
- Let $\beta_{\sigma \frown i}$ be as in the proof of the lemma. (Recall: $[\beta_{\sigma \frown i}]$ is the set of types for which $F_{\sigma \frown i}$ works as an approx. Skolem function for φ_{σ} .)
- The sets $[\beta_{\sigma \frown i}]$ cover $[\chi_{\sigma}]$. Let $\{\chi_{\sigma \frown i}\}_{i \le n_{\sigma}}$ be a sequence of closed formulas such that $[\chi_{\sigma \frown i}] \subseteq [\beta_{\sigma \frown i}]$ and such that $\bigcup_{i \le n_{\sigma}} [\chi_{\sigma \frown i}] \supseteq [\chi_{\sigma}]$ (such formulas always exist).
- Let $\varphi_{\sigma \frown i}(\bar{x}, y) \equiv (F_{\sigma \frown i}(\bar{x}, y) < \delta_{\sigma \frown i})$ and let $\varepsilon_{\sigma \frown i} = \frac{1}{2}\delta_{\sigma \frown i}$.

- Build a finitely branching subtree of $\omega^{<\omega}$: Let $\varphi_{\varnothing} = \varphi'$, $[\chi_{\varnothing}] = S_{\bar{x}}(T)$, and $\varepsilon_{\varnothing} = \frac{1}{2}r$.
- Given $(\varphi_{\sigma}, \chi_{\sigma}, \varepsilon_{\sigma})$ for a node σ we have by the induction hypothesis that $\forall \bar{x}(\chi_{\sigma}(\bar{x}) \rightarrow \exists y \varphi_{\sigma}(\bar{x}, y))$, so we can apply the lemma with $\varepsilon = \varepsilon_{\sigma}$ to get $F_{\sigma \frown 0}, \ldots, F_{\sigma \frown n_{\sigma}}$ and $\delta_{\sigma \frown 0}, \ldots, \delta_{\sigma \frown n_{\sigma}} < \varepsilon_{\sigma}$.
- Let β_{σ∼i} be as in the proof of the lemma. (Recall: [β_{σ∼i}] is the set of types for which F_{σ∼i} works as an approx. Skolem function for φ_σ.)
- The sets $[\beta_{\sigma \frown i}]$ cover $[\chi_{\sigma}]$. Let $\{\chi_{\sigma \frown i}\}_{i \le n_{\sigma}}$ be a sequence of closed formulas such that $[\chi_{\sigma \frown i}] \subseteq [\beta_{\sigma \frown i}]$ and such that $\bigcup_{i \le n_{\sigma}} [\chi_{\sigma \frown i}] \supseteq [\chi_{\sigma}]$ (such formulas always exist).
- Let $\varphi_{\sigma \frown i}(\bar{x}, y) \equiv (F_{\sigma \frown i}(\bar{x}, y) < \delta_{\sigma \frown i})$ and let $\varepsilon_{\sigma \frown i} = \frac{1}{2}\delta_{\sigma \frown i}$.
- Note that by construction we have ensured the induction hypothesis for the nodes $\sigma \frown i$.

Let R be the tree we built. For each path γ ∈ [R] (where [R] is the compact Hausdorff space of paths through R), let C_γ = ⋂_{n<ω}[χ_{γ↾n}]. By construction ⋃_{γ∈[R]} C_γ covers S_{x̄}(T).

- Let R be the tree we built. For each path γ ∈ [R] (where [R] is the compact Hausdorff space of paths through R), let C_γ = ⋂_{n<ω}[χ_{γ↾n}]. By construction ⋃_{γ∈[R]} C_γ covers S_{x̄}(T).
- Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_{\gamma}\}$. This is a closed set.

- Let R be the tree we built. For each path γ ∈ [R] (where [R] is the compact Hausdorff space of paths through R), let C_γ = ⋂_{n<ω}[χ_{γ↾n}]. By construction ⋃_{γ∈[R]} C_γ covers S_{x̄}(T).
- Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_{\gamma}\}$. This is a closed set.
- For each n, let G^n be a function on $[R] \times S_{\bar{x}y}(T)$ given by $G^n_{\gamma}(\bar{x}, y) = F_{\gamma \upharpoonright n}(\bar{x}, y).$

- Let R be the tree we built. For each path γ ∈ [R] (where [R] is the compact Hausdorff space of paths through R), let C_γ = ⋂_{n<ω}[χ_{γ↾n}]. By construction ⋃_{γ∈[R]} C_γ covers S_{x̄}(T).
- Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_{\gamma}\}$. This is a closed set.
- For each n, let G^n be a function on $[R] \times S_{\bar{x}y}(T)$ given by $G^n_{\gamma}(\bar{x}, y) = F_{\gamma \upharpoonright n}(\bar{x}, y).$
- If you carefully trace what we did you can show that for any n we have that, for any $(\gamma, p) \in Q$, $|G_{\gamma}^{n}(p) G_{\gamma}^{n+1}(p)| \leq 5 \cdot 2^{-n-2}r$. So let $G: Q \to \mathbb{R}$ be the limit of the uniformly convergent sequence.

- Let R be the tree we built. For each path γ ∈ [R] (where [R] is the compact Hausdorff space of paths through R), let C_γ = ⋂_{n<ω}[χ_{γ↾n}]. By construction ⋃_{γ∈[R]} C_γ covers S_{x̄}(T).
- Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_{\gamma}\}$. This is a closed set.
- For each n, let G^n be a function on $[R] \times S_{\bar{x}y}(T)$ given by $G^n_{\gamma}(\bar{x}, y) = F_{\gamma \upharpoonright n}(\bar{x}, y).$
- If you carefully trace what we did you can show that for any n we have that, for any $(\gamma, p) \in Q$, $|G_{\gamma}^{n}(p) G_{\gamma}^{n+1}(p)| \leq 5 \cdot 2^{-n-2}r$. So let $G: Q \to \mathbb{R}$ be the limit of the uniformly convergent sequence.
- Furthermore, for any \bar{a} and γ with $\bar{a} \in C_{\gamma}$, $G_{\gamma}(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ that always has $d(b,c) \leq r$ with some c such that $\varphi'(\bar{a},c)$, and therefore $\chi(\bar{a},c)$, holds. Hence $\varphi(\bar{a},b)$ holds, as required.

- Let R be the tree we built. For each path γ ∈ [R] (where [R] is the compact Hausdorff space of paths through R), let C_γ = ⋂_{n<ω}[χ_{γ↾n}]. By construction ⋃_{γ∈[R]} C_γ covers S_{x̄}(T).
- Let $Q = \{(\gamma, p) \in [R] \times S_{\bar{x}y}(T) : p \upharpoonright \bar{x} \in C_{\gamma}\}$. This is a closed set.
- For each n, let G^n be a function on $[R] \times S_{\bar{x}y}(T)$ given by $G^n_{\gamma}(\bar{x}, y) = F_{\gamma \upharpoonright n}(\bar{x}, y).$
- If you carefully trace what we did you can show that for any n we have that, for any $(\gamma, p) \in Q$, $|G_{\gamma}^{n}(p) G_{\gamma}^{n+1}(p)| \leq 5 \cdot 2^{-n-2}r$. So let $G: Q \to \mathbb{R}$ be the limit of the uniformly convergent sequence.
- Furthermore, for any \bar{a} and γ with $\bar{a} \in C_{\gamma}$, $G_{\gamma}(\bar{a}, y)$ is the distance predicate of a singleton $\{b\}$ that always has $d(b, c) \leq r$ with some c such that $\varphi'(\bar{a}, c)$, and therefore $\chi(\bar{a}, c)$, holds. Hence $\varphi(\bar{a}, b)$ holds, as required.
- Finally, pick an embedding of [R] into 2^{ω} and use the Tietze extension theorem to continuously extend G to all of $2^{\omega} \times S_{\bar{x}y}(T)$.

Corollary

If T has a weakly Skolemized expansion T', then there is a T'' with $T'\supseteq T''\supseteq T$ such that $|\mathcal{L}''|=|\mathcal{L}|$

Corollary

If T has a weakly Skolemized expansion T', then there is a T'' with $T'\supseteq T''\supseteq T$ such that $|\mathcal{L}''|=|\mathcal{L}|$

Proof.

If a theory has almost Skolem functions for all finitary formulas $\varphi(\bar{x}, y)$ with rational bounds that satisfy $\forall \bar{x} \exists y \varphi(\bar{x}, y)$, then it is weakly Skolemized. The number of such formulas is always at most the cardinality of the language. A definable almost function is always definable in some countable reduct. A typical iterative argument gives T''.

Step I: Are complete expansions weakly Skolemized?

In discrete logic it is entirely trivial that complete expansions are Skolemized.

In discrete logic it is entirely trivial that complete expansions are Skolemized.

Definition

If M is a metric structure, the *complete expansion of* M, $M^{\#}$, is a metric structure with the same underlying domain as M, but with all uniformly continuous function $M^n \to \mathbb{R}$ and $M^n \to M$ added as predicates and functions.

Uniformly Locally Compact Theories

A theory T is uniformly locally compact if for every sufficiently small $\varepsilon > 0$ and every $\delta > 0$, there is an $N(\varepsilon, \delta) < \omega$ such that every closed ε -ball in every model of T can be covered by at most $N(\varepsilon, \delta)$ open δ -balls.

Uniformly Locally Compact Theories

A theory T is uniformly locally compact if for every sufficiently small $\varepsilon > 0$ and every $\delta > 0$, there is an $N(\varepsilon, \delta) < \omega$ such that every closed ε -ball in every model of T can be covered by at most $N(\varepsilon, \delta)$ open δ -balls.

Proposition (H.)

If T is uniformly locally compact, then any model $M \models T$ has an expansion M' such that Th(M') is weakly Skolemized.

Uniformly Locally Compact Theories

A theory T is uniformly locally compact if for every sufficiently small $\varepsilon > 0$ and every $\delta > 0$, there is an $N(\varepsilon, \delta) < \omega$ such that every closed ε -ball in every model of T can be covered by at most $N(\varepsilon, \delta)$ open δ -balls.

Proposition (H.)

If T is uniformly locally compact, then any model $M\models T$ has an expansion M' such that $\mathrm{Th}(M')$ is weakly Skolemized.

Proof (for \mathbb{R}).

Suppose T has a model M whose underlying metric space is uniformly equivalent to \mathbb{R} . Add distance predicates $\{D_r\}_{r\in[0,1)}$ for each set of the form $\mathbb{Z} + r$. Since each D_r is uniformly discrete, we can Skolemize it naïvely. By uniform local compactness, for every $N \models T'$ and every $a \in N$ there is an $r \in [0,1)$ such that $a \in D_r(N)$. Therefore every such a is in the domain of a complete set of Skolem functions on some definable domain. It follows that T' is weakly Skolemized.

Theorem (Milman)

Let M be a metric structure based on the unit sphere of an infinite dimensional Hilbert space. There is a complete type $p \in S_1(Th(M))$ such that in some $N \succeq M$, p(N) contains the unit sphere of an infinite dimensional Hilbert subspace.

Corollary (H.)

If D is the distance predicate of a definable subset of M whose distinct points are $(\geq \varepsilon)$ -separated, then for any $a \models p$, $d(a, D) \geq \frac{\varepsilon}{2}$.

Corollary (H.)

If D is the distance predicate of a definable subset of M whose distinct points are $(\geq \varepsilon)$ -separated, then for any $a \models p$, $d(a, D) \geq \frac{\varepsilon}{2}$.

Proof.

Since p is a complete type, there is an r such that for any $a \models p$, d(a, D) = r. Assume that $r < \frac{\varepsilon}{2}$ and work in a saturated enough model. Find $b \in D$ such that for some $a \models p$, d(a, b) = r. Since a is contained in an infinite dimensional Hilbert subspace of realizations of p, by Euclidean geometry there is a $c \models p$ such that $r < d(a, c) < \frac{\varepsilon}{2}$. There must be an $e \in D \setminus \{a\}$ such that d(c, e) = r, but this implies that $d(a, e) \le d(a, c) + d(c, e) < \frac{\varepsilon}{2} + r < \varepsilon$, which is a contradiction.

Thank you

James Hanson (UW Madison)

Skolemization in Continuous Logic

November 12, 2019 28 / 28