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Brute Force Skolemization

Definition

A discrete theory T is Skolemized if for every formula ϕ(x̄, y) there is a
definable function f(x̄) such that T |= ∀x̄[∃yϕ(x̄, y)→ ϕ(x̄, f(x̄))].

Consider the following terrible proof that Skolemization is possible in
discrete logic: Take a theory T with model M .

Step I: Pass to the complete expansion, M# (i.e., add every subset of
Mn for every n < ω as a predicate), and note that a complete
expansion is always Skolemized.

Step II:
Argue that if a theory T has an expansion T ′ ⊇ T that is Skolemized,
then there is an intermediate theory T ′′ with T ′ ⊇ T ′′ ⊇ T such that
T ′′ is already Skolemized and such that |L| = |L′′|.
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Metric Structures

Metric signatures are defined exactly like discrete signatures with the
following changes/additions:

The symbol d instead of =.

To each predicate symbol P (including d), we assign a bound rP > 0.

To each predicate or function symbol s (other than d), we assign a
modulus ωs : R+ → R+, satisfying ωs(x)→ 0 as x→ 0.

Given a metric signature L, an L-structure, M , is a complete metric space
(M, dM ), of diameter ≤ rd, with the following data:

If P is an n-ary predicate symbol, then PM : Mn → [−rP , rP ] which
is ωP -uniformly continuous.

If f is an n-ary function symbol, then fM : Mn →M which is
ωf -uniformly continuous.

If c is a constant symbol, then cM ∈M .
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Formulas a different way

Terms are as in discrete logic. Open and closed formulas1 are defined
inductively.

Let P t̄ and Qs̄ be atomic formulas in the standard syntactic
sense, and let r ∈ R.

P t̄@A r and P t̄@AQs̄ are open formulas for @A ∈ {<,>, 6=} and are
closed formulas for @A ∈ {≤,≥,=}.

Let ϕ’s be open formulas and χ’s be closed formulas.

χ→ ϕ, ¬χ, ϕ ∧ ϕ′, ϕ ∨ ϕ′, and
∨
i<ω ϕi are open formulas.

ϕ→ χ, ¬ϕ, χ ∧ χ′, χ ∨ χ′, and
∧
i<ω χi are closed formulas.

∃vϕ and ∀∀vϕ are open formulas.

@vχ and ∀vχ are closed formulas.

The semantic interpretation of any standard logical symbol is standard.

1Apologies to anyone who learned logic from Shoenfield or Chang and Keisler.
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Semantics

The only non-standard symbols are strong universal quantification, ∀∀xϕ,
and weak existential quantification, @xχ:

M |= ∀∀xϕ(ā, x) if for all b ∈ N �M , N |= ϕ(ā, b).

M |= @xχ(ā, x) if there exists b ∈ N �M , N |= χ(ā, b).

Examples:

∀y(dxy < ε→ dxy = 0), x is isolated within distance ε.

∃xyz∀∀w(χ(w)→ dxw < δ ∨ dyw < δ ∨ dzw < δ), χ can be covered
by 3 open balls of radius δ (in every model).

∀x@y (Dy = 0 ∧ dxy = Dx), D is the distance predicate of a set.

∀x@y [Fxy = 0 ∧ ∀z(dyz = Fxz)], F defines a function.∧
i<ω(ϕi(x, z̄)→ χi(y, z̄)), x and y satisfy the same formulas over z̄,

where (ϕi, χi) is a ‘dense’ sequence of formulas satisfying
ϕi(w, z̄) |= χi(w, z̄). (L countable.)
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Examples:

∀y(dxy < ε→ dxy = 0), x is isolated within distance ε.

∃xyz∀∀w(χ(w)→ dxw < δ ∨ dyw < δ ∨ dzw < δ), χ can be covered
by 3 open balls of radius δ (in every model).

∀x@y (Dy = 0 ∧ dxy = Dx), D is the distance predicate of a set.

∀x@y [Fxy = 0 ∧ ∀z(dyz = Fxz)], F defines a function.∧
i<ω(ϕi(x, z̄)→ χi(y, z̄)), x and y satisfy the same formulas over z̄,

where (ϕi, χi) is a ‘dense’ sequence of formulas satisfying
ϕi(w, z̄) |= χi(w, z̄). (L countable.)

James Hanson (UW Madison) Skolemization in Continuous Logic November 12, 2019 5 / 28



Semantics

The only non-standard symbols are strong universal quantification, ∀∀xϕ,
and weak existential quantification, @xχ:
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Type Space

Given a set of closed sentences T and a tuple of variables x̄, the type
space Sx̄(T ) is the collection of all maximal finitely satisfiable (which, by
compactness, are satisfiable) sets p(x̄) ⊇ T of closed formulas with free
variables among x̄.

For each closed formula χ, let [χ] = {p ∈ Sx̄(T ) : χ ∈ p}.
For each open formula ϕ, let [ϕ] = {p ∈ Sx̄(T ) : ¬ϕ /∈ p}.

The sets [ϕ] form a base of a compact Hausdorff topology on Sx̄(T ), even
if we restrict to finitary formulas with rational bounds.

For any open set U ⊆ Sx̄(T ), there is an open formula ϕ such that
U = [ϕ] iff U is an Fσ set (i.e., a Σ0

2 set).

Likewise [χ] are precisely the zerosets (i.e., the closed Gδ / Π0
2 sets).

If L is countable, these exhaust the open and closed sets, respectively.
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General Formulas

Definition

Let X be a topological spaces. An (X-valued) formulas (on x̄) is a
continuous function f : Sx̄(T )→ X.

Formulas in discrete logic are equivalent to {0, 1}-valued formulas.

If you squint, open and closed formulas are equivalent to S-valued
formulas, where S is the Sierpiński space.

R-valued formulas are equivalent to the typical notion of formula in
continuous logic.

If F and G are R-valued formulas, then expressions like Fx̄ < r and
Fx̄+Gȳ = Gz̄ have interpretations as open or closed formulas. We
will write these freely.
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Skolem Functions in Continuous Logic

Adding a discrete metric and Skolemizing näıvely works for some
applications (Ehrenfeucht-Mostowski models).

It’s far too much to ask for while preserving the metric: Let M be a
structure whose universe is [0, 1] with the standard metric and with a
unary predicate I such that IM (x) = x.

There is a formula ϕ(x, y) that looks like this:

x
0 1

y

0

1

ϕ

ϕ

M |= ∀∀x∃yϕ(x, y), but there is no continuous function
f : [0, 1]→ [0, 1] such that M |= ϕ(x, f(x)) for every x.
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Weak Skolemization

If T is a Skolemized theory then for any set of parameters A, dclA is a
model of T .

In discrete logic this is equivalent to being Skolemized:

For any formula ϕ(x, y), for every type p ∈ S1(T ), let a |= p. If
∃yϕ(a, y), then since dcl{a} |= T there must be a b ∈ dcl{a} such
that ϕ(a, b). Some formula ψ(a, y) witnesses that b ∈ dcl{a}. By
compactness there’s a finite list of these formulas that work for any
type p and we can patch these togther to form a Skolem function.

Definition

Fix a complete theory T . Let M |= T and A ⊆M . The definable closure
of A, dclA, is the set of all b ∈M such that for some a ∈ A and some
R-valued formula F , we have M |= ∀x(dxb = F āx).

Definition (H.)

A theory T is weakly Skolemized if for any A ⊆M |= T , dclA �M .

There are theories that are weakly Skolemized but not Skolemized.
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What does weak Skolemization mean?

Assume T is weakly Skolemized. Pick an open formula ϕ(x̄, y).

By weak Skolemization, for any ā, if ∃yϕ(ā, y), then there is an
R-valued formula F (x̄, y) such that F (ā, y) is the distance predicate
of a singleton {b} satisfying ϕ(ā, b).

This is a property of tp(ā), but once again different types may require
different formulas.

For each R-valued formula F , the set of parameters for which it is the
distance predicate of a singleton is given by the closed formula
@z[Fx̄z = 0 ∧ ∀y(dyz = Fx̄y)].

Therefore we have a covering of a compact Hausdorff space, Sx̄(T ),
by zerosets (i.e., closed Gδ / Π0

2 sets), specifically [¬∃yϕ(x̄, y)] and
the domains of definable partial Skolem functions for ϕ.
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When can we find a small subcover?

Question

Does there exist a κ such that:

(∗) for any compact Hausdorff space X and any cover {Fi}i∈I of X by
closed Gδ sets there is a subcover J ⊆ I such that |J | ≤ κ?

Theorem (Usuba)

A cardinal κ has property (∗) if and only if it is the first ω1-strongly
compact cardinal. In particular, it is consistent that no such κ exists.
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ω1-Strongly Compact Cardinals
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Overview of Large Cardinals

We don’t actually need large cardinals.
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Step II: Bringing the Cardinality Down
The Structure of Weakly Skolemized Theories
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Approximate Functions

Let Fx̄y be an R-valued formula such that for some parameters ā,
F āy is the distance predicate of a singleton.

Consider the formula

αF,ε(x̄) ≡ ∃y
[
Fx̄y <

ε

2
∧ ∀∀z

(
|dyz − Fx̄z| < ε

2

)]
.

We have that αF,ε(ā), and while αF,ε(ē) may not guarantee that F ēy
is the distance predicate of a singleton, it does give that it
approximately selects out a unique element to within a distance of ε.
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approximately selects out a unique element to within a distance of ε.
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Almost Functions

Let Y be a set. An almost function, f , on Y is a partial function on
X × Y for some set X such that for every y ∈ Y there is an x ∈ X such
that f(x, y) is defined.

Definition

An X-indexed continuous family of R-valued formulas
F : X × Sȳz(T )→ R defines a definable almost function if for any ā there
is t ∈ X such that Ftāz is the distance predicate of a singleton.
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Building Almost Skolem Functions: The Lemma

We want to show that weak Skolemization is witnessed by almost
functions. We’ll need this:

Lemma

If T is weakly Skolemized, then for any ε > 0 and any ϕ(x̄, y) and χ(x̄),
open and closed formulas, such that ∀∀x̄(χ(x̄)→ ∃yϕ(x̄, y)), there is a
finite sequence of R-valued formulas F0, . . . , Fn and real numbers
δ0, . . . , δn < ε such that for any ā, if χ(ā), then there is an i ≤ n such
that αFi,δi(ā) and ∀∀y(Fiāy ≤ δi → ϕ(ā, y)).

Recall that αFi,δi(x̄) ≡ ∃y
[
Fix̄y <

δi
2 ∧ ∀∀z

(
|dyz − Fix̄z| < δi

2

)]
. These

conditions at the end mean that Fiāy is ‘within δi of a distance predicate
for a singleton’ and any y for which Fiāy is sufficiently small is a witness
to ∃yϕ(ā, y).
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Proof of Lemma

Since T is weakly Skolemized, for each p ∈ [χ] we can find an
R-valued formula Fp such that if ā |= p, then Fpāy is the distance
predicate of a singleton whose element witnesses ∃yϕ(ā, y). We can
also find a δp > 0 with δp < ε, such that ∀∀y(Fpāy ≤ δp → ϕ(ā, y)),
since ϕ is an open formula.

Now let βp(x̄) = αFp,δp(x̄) ∧ ∀∀y(Fpx̄y ≤ δp → ϕ(x̄, y)). Clearly by
construction p |= βp.

{[βp]}p∈[χ] is an open cover of [χ]. By compactness it has a finite
subcover indexed by {p0, p1, . . . , pn}. Now Fi = Fpi and δi = δpi are
the required formulas and numbers.

James Hanson (UW Madison) Skolemization in Continuous Logic November 12, 2019 18 / 28



Proof of Lemma

Since T is weakly Skolemized, for each p ∈ [χ] we can find an
R-valued formula Fp such that if ā |= p, then Fpāy is the distance
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Building Almost Skolem Functions: The Theorem

Theorem (H.)

If T is weakly Skolemized, then for any open formula ϕ(x̄, y) such that
T |= ∀∀x̄∃yϕ(x̄, y), there is a 2ω-indexed continuous family of R-valued
formulas F : 2ω × Sx̄y(T )→ R that defines an almost function which
produces witnesses for ∀∀x̄∃yϕ(x̄, y) (i.e., for any ā there is t ∈ 2ω such
that Ftāy is the distance predicate of a witness).

Proof Idea. Use the lemma to get a finite list of approximate Skolem
functions that approximately work. Build a finitely branching tree whose
paths are increasingly better approximate Skolem functions. Use these to
build the almost Skolem function.

Proof. We can find an open formula ϕ′(x̄, y) and a closed formula η(x̄, y)
such that [ϕ′] ⊆ [η] ⊆ [ϕ], ∀∀x̄∃yϕ′(x̄, y), and ∀x̄@yη(x̄, y).
Since [χ] is a closed and a subset of [ϕ], we can find an r > 0 such that
∀∀x̄yz̄w(χ(x̄, y) ∧ d(x̄y, z̄w) ≤ r → ϕ(ȳ, z)).
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Proof of Theorem, cont.

Build a finitely branching subtree of ω<ω: Let ϕ∅ = ϕ′,
[χ∅] = Sx̄(T ), and ε∅ = 1

2r.

Given (ϕσ, χσ, εσ) for a node σ we have by the induction hypothesis
that ∀∀x̄(χσ(x̄)→ ∃yϕσ(x̄, y)), so we can apply the lemma with
ε = εσ to get Fσ_0, . . . , Fσ_nσ and δσ_0, . . . , δσ_nσ < εσ.

Let βσ_i be as in the proof of the lemma. (Recall: [βσ_i] is the set
of types for which Fσ_i works as an approx. Skolem function for ϕσ.)

The sets [βσ_i] cover [χσ]. Let {χσ_i}i≤nσ be a sequence of closed
formulas such that [χσ_i] ⊆ [βσ_i] and such that⋃
i≤nσ [χσ_i] ⊇ [χσ] (such formulas always exist).

Let ϕσ_i(x̄, y) ≡ (Fσ_i(x̄, y) < δσ_i) and let εσ_i = 1
2δσ_i.

Note that by construction we have ensured the induction hypothesis
for the nodes σ _ i.
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Let R be the tree we built. For each path γ ∈ [R] (where [R] is the
compact Hausdorff space of paths through R), let Cγ =

⋂
n<ω[χγ�n].

By construction
⋃
γ∈[R]Cγ covers Sx̄(T ).

Let Q = {(γ, p) ∈ [R]× Sx̄y(T ) : p � x̄ ∈ Cγ}. This is a closed set.

For each n, let Gn be a function on [R]× Sx̄y(T ) given by
Gnγ (x̄, y) = Fγ�n(x̄, y).

If you carefully trace what we did you can show that for any n we
have that, for any (γ, p) ∈ Q, |Gnγ (p)−Gn+1

γ (p)| ≤ 5 · 2−n−2r. So let
G : Q→ R be the limit of the uniformly convergent sequence.

Furthermore, for any ā and γ with ā ∈ Cγ , Gγ(ā, y) is the distance
predicate of a singleton {b} that always has d(b, c) ≤ r with some c
such that ϕ′(ā, c), and therefore χ(ā, c), holds. Hence ϕ(ā, b) holds,
as required.

Finally, pick an embedding of [R] into 2ω and use the Tietze extension
theorem to continuously extend G to all of 2ω × Sx̄y(T ).
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Step II: Bringing the Cardinality Down

Corollary

If T has a weakly Skolemized expansion T ′, then there is a T ′′ with
T ′ ⊇ T ′′ ⊇ T such that |L′′| = |L|

Proof.

If a theory has almost Skolem functions for all finitary formulas ϕ(x̄, y)
with rational bounds that satisfy ∀∀x̄∃yϕ(x̄, y), then it is weakly
Skolemized. The number of such formulas is always at most the cardinality
of the language. A definable almost function is always definable in some
countable reduct. A typical iterative argument gives T ′′.
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Step II: Bringing the Cardinality Down
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Step I: Are complete expansions weakly Skolemized?
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Complete Expansions

In discrete logic it is entirely trivial that complete expansions are
Skolemized.

Definition

If M is a metric structure, the complete expansion of M , M#, is a metric
structure with the same underlying domain as M , but with all uniformly
continuous function Mn → R and Mn →M added as predicates and
functions.
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Uniformly Locally Compact Theories

A theory T is uniformly locally compact if for every sufficiently small ε > 0
and every δ > 0, there is an N(ε, δ) < ω such that every closed ε-ball in
every model of T can be covered by at most N(ε, δ) open δ-balls.

Proposition (H.)

If T is uniformly locally compact, then any model M |= T has an
expansion M ′ such that Th(M ′) is weakly Skolemized.

Proof (for R).

Suppose T has a model M whose underlying metric space is uniformly
equivalent to R. Add distance predicates {Dr}r∈[0,1) for each set of the
form Z + r. Since each Dr is uniformly discrete, we can Skolemize it
näıvely. By uniform local compactness, for every N |= T ′ and every a ∈ N
there is an r ∈ [0, 1) such that a ∈ Dr(N). Therefore every such a is in
the domain of a complete set of Skolem functions on some definable
domain. It follows that T ′ is weakly Skolemized.
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Proof does not generalize I

Theorem (Milman)

Let M be a metric structure based on the unit sphere of an infinite
dimensional Hilbert space. There is a complete type p ∈ S1(Th(M)) such
that in some N �M , p(N) contains the unit sphere of an infinite
dimensional Hilbert subspace.
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Proof does not generalize II

Corollary (H.)

If D is the distance predicate of a definable subset of M whose distinct
points are (≥ ε)-separated, then for any a |= p, d(a,D) ≥ ε

2 .

Proof.

Since p is a complete type, there is an r such that for any a |= p,
d(a,D) = r. Assume that r < ε

2 and work in a saturated enough model.
Find b ∈ D such that for some a |= p, d(a, b) = r. Since a is contained in
an infinite dimensional Hilbert subspace of realizations of p, by Euclidean
geometry there is a c |= p such that r < d(a, c) < ε

2 . There must be an
e ∈ D \ {a} such that d(c, e) = r, but this implies that
d(a, e) ≤ d(a, c) + d(c, e) < ε

2 + r < ε, which is a contradiction.
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Thank you
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