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Continuous Logic

Generalization of first-order logic for metric structures: Complete
bounded metric spaces with bounded uniformly continuous R-valued
predicates and uniformly continuous functions.

These restrictions can be motivated by compatibility with
ultraproducts.

Formulas are real valued with sup and inf as quantifiers and arbitrary
continuous functions F : Rk → R for k ≤ ω as connectives.

Formulas are closed under uniform limits up to logical equivalence.

Formulas are uniformly continuous on metric structures.

Zeroset of a formula is the set of all tuples where it evaluates to 0.
(Also refers to corresponding set of types.)

In discrete logic zerosets correspond to countably type-definable sets.

A zeroset is definable if there is a formula that is the distance to it in
any model (relative quantification).
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Type Spaces in Continuous Logic

The set of types in a theory T in the variable tuple x̄ is written Sx̄(T ) or
Sn(T ).

Points (called types) are maximal consistent sets of real values for
formulas. Topology is the coarsest that makes all formulas continuous.

Sn(T ) is compact and Hausdorff.

Sn(T ) may fail to be zero-dimensional.

Continuous function Sn(T )→ R correspond precisely to formulas
with free variables among x̄ (modulo T ).
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Strongly Minimal Sets

A zeroset is algebraic if it has a compact set of realizations in any model.

Definition

A strongly minimal set is a definable set with no pair of disjoint
non-algebraic zerosets over any parameters.

Has a unique non-algebraic type over any parameters. Such types are
also called strongly minimal.

A theory is strongly minimal if [d(x , x) = 0] is a strongly minimal set.

Much of the internal machinery of strongly minimal sets goes through
in continuous logic (e.g. pregeometry generated by acl), but...

...they do not play the same role in uncountably categorical theories:

Some do not have any strongly minimal sets (e.g. ∞-dim. Hilbert
space).
Even when they do, they may only show up in imaginaries or over high
dimensional models. (H.)
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An Important Fact about Strongly Minimal Sets

Fact

Let T be a strongly minimal theory.

Models of T are (uniformly) locally
compact.

Corollaries:

There is an ε > 0 such that if d(a, b) < ε, then b ∈ acl(a).

For any a, b ∈ M, if b is in the connected component of a, then
b ∈ acl(a).

If M ≺ N are models of T , then M is an open subset of N.

Strongly minimal theories behave a lot more like discrete theories than
arbitrary continuous theories do.
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Anything New?

Noquez asked in her thesis whether or not there are any strongly minimal
sets that are not in some sense just discrete.

Definition

A theory T is essentially continuous if it does not interpret any infinite
discrete structure.
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An Old Strongly Minimal Set

Proposition

The theory T of (R,+) with the
metric min{|x − y |, 1} is strongly
minimal and essentially continuous.
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S1(M) of M � R

Strong Minimality Proof.

Argue that models of T are of the form R⊕Qκ and show that all
elements realizing a non-algebraic type over some set of parameters are
automorphic.
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Essential Continuity Proof I

Let H be the home sort.

Assume that T has an infinite discrete imaginary sort.

By ω-stability there is a discrete strongly minimal set, D, in that sort.

There must be a compact-to-compact correspondence, R, between H
and D. Since D is discrete, this is actually a compact-to-finite
correspondence.
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Essential Continuity Proof II

What this means precisely is that R is the zeroset of some formula
ϕ(x :H, y :D).

For generic a ∈ H, there is some fixed ε > 0 such that if ϕ(a, b) 6= 0,
then ϕ(a, b) > ε.

But, by uniform continuity of ϕ(x , y), this implies that if ϕ(a, c) = 0,
then ϕ(a + r , c) = 0 for all r ∈ R. Contradiction.
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Generalizing

In the proof of essential continuity we did not use anything about (R,+)
other than the fact that generic elements have non-compact connected
components, hence:

Proposition

If T is a strongly minimal theory whose generic elements have
non-compact connected components, then T is essentially continuous.

Converse?
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Connectivity

Problem: Continuous logic cannot talk about connectivity directly.

Can talk about ‘ε-connectivity’ (to the same extent that discrete logic
can talk about graph connectivity).

a

b c

d <
ε

d
<
ε

d < ε

d < ε

d
<
ε

d
<
ε

d < ε

Definition

Let ∼ε be the transitive closure of the relation d(x , y) < ε. Let [a]ε be the
∼ε-equivalence class of a.

If a and b are in the same connected component of X , then a ∼ε b
for every ε > 0. (Converse can fail.)

x ∼e y is an ‘open formula’ (co-zeroset).
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Converse I

Let T be a strongly minimal theory and assume that generic elements in
T have compact connected components.

Let a be a generic element. By local compactness, there is a compact
clopen set Q containing a.

Find ε > 0 small enough that Q and its complement are > ε apart
(exists by local compactness) and that d(a, b) < ε⇒ b ∈ acl(a).

[a]ε must be a clopen subset of Q and is therefore compact. So ∼ε is
witnessed by chains of uniformly bounded length for generics.
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Converse II

By compactness there is some 0 < δ < ε such that ∼ε is implied by ∼δ for
generic elements, with witnessing chains of the same length.

Consider this
formula for n larger than the bound:

ρn(z0, zn) := inf
z1...zn−1

max
i<n

max{0, d(zi , zi+1)− δ}

We have established that for generic a and arbitrary b,

if a ∼ε b, then ρn(a, b) = 0 and

if a 6∼ε b, then ρn(a, b) ≥ ε− δ.
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Converse III

The generic type p(x) satisfies the ‘formula’

U(x) := ∀y
(
ρn(x , y) <

1

3
(ε− δ)

)
∨
(
ρn(x , y) >

2

3
(ε− δ)

)
,

which corresponds∗ to an open neighborhood of p, and so in particular is
satisfied by all but an algebraic set of types. The set of elements satisfying
¬U(x) are closed under ∼ε as well,∗ so they too have a uniform bound m
on witnessing chain lengths for ∼ε.
So the formula

min

{
1,

3

2(ε− δ)
ρn+m+1(x , y)

}
is {0, 1}-valued and defines ∼ ε+δ

2
. The quotient is discrete and strongly

minimal.
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Full Statement

We have also shown that if the connected components of generic elements
are compact then arbitrary connected components are compact.

Theorem (H.)

Let T be a strongly minimal theory. TFAE:

T is essentially continuous.

Some model has a non-compact connected component.

Every generic element has a non-compact connected component.

T does not have a ∅-definable infinite discrete quotient.

What about the prime model?
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What about the Prime Model?

The prime model may fail to have a non-compact connected component.

Counterexample

The set {± log n : n ≥ 1} as a subspace of R with the metric
min{|x − y |, 1} is essentially continuous strongly minimal but has a totally
disconnected prime model.

Proof.

The relevant set is actually definable in (R, 0), and so this is the theory of
a non-compact definable subset of a strongly minimal set and so is also
strongly minimal. Essential continuity can either be shown directly or
follows from the essential continuity of (R, 0).

Also an example showing that ‘every definable set is either compact or
co-pre-compact’ is not good enough to be the definition of strongly
minimal.
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Groups
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Discrete Strongly Minimal Groups

Fact (Reineke ’75)

The strongly minimal groups are precisely the infinite characteristic p
vector spaces and the infinite divisible Abelian groups in which for each
prime p, there are finitely many elements of order p.

Divisible Abelian groups are known to be of the form

Qκ ⊕
⊕
p

(Z/p∞Z)αp ,

where Z/p∞Z is the p-Prüfer group (i.e. the multiplicative group of pnth
roots of unity for fixed p and arbitrary n).
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Locally Compact Abelian Groups

Fact (van Kampen ’35)

If G is a locally compact Abelian (Hausdorff) topological group, then it
has an open subgroup H topologically isomorphic to Rn × K for some
compact group K and some non-negative integer n.

N.B.

While G/H is a discrete group, it is not necessarily true that G is
topologically isomorphic to (G/H)⊕ H.

That said, G does always factor as Rn ⊕ (G/Rn).
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Groups in Continuous Logic

A group in continuous logic is some structure with some functions
(x , y) 7→ x · y and x 7→ x−1 and a constant e making it into an
algebraic group.

For a fixed signature this is an elementary class.

Note that we have smuggled some assumptions in. Not all metrizable
topological groups admit uniformly continuous group operations.

(Ben Yaacov) There is a formula that defines a bi-invariant metric in
any metric structure group.

For any definable subgroup H the coset space G/H is an imaginary. If
H is a normal subgroup, then G/H’s group operations are definable.
Note that compact subgroups are always definable with parameters.

(Ben Yaacov) Type-definable groups in ω-stable theories are definable.

There is a superstable group with a type-definable subgroup that is
not the intersection of definable subgroups: Th(Q,=,+, cos, sin).
The subgroup {cos(x) = 1, sin(x) = 0} is type-definable but not the
intersection of definable subgroups. (Theory has no infinite definable
proper subgroups.)
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Strongly Minimal Groups in Continuous Logic I

Theorem (H.)

A metrizable topological group G has a metric making it into a strongly
minimal group if and only if it has a compact subgroup K such that G/K
is topologically isomorphic to one of the following:

An infinite characteristic p vector space.

Rn⊕H, where n is a non-negative integer and H is a divisible strongly
minimal discrete group or possibly the trivial group (for n > 0).

In particular, G is essentially continuous if and only if it is of the second
form with n > 0.

G can fail to be a direct product of G/K and K . An easy example is the
additive group of the p-adic numbers with the metric min{|x − y |p, 1}.
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Strongly Minimal Groups in Continuous Logic II

In a strongly minimal group a proper type-definable subgroup is
always compact.

If all elements of a group have ‘compact order’ and all non-identity
elements are conjugate, then the group has size ≤ 2.

From these: Strongly minimal groups are Abelian.

If some element fails to be divisible, then all elements must be order p
for some prime p (because pG is a definable subgroup).

If the group is divisible, then sets of order p elements must each be
compact and therefore, by the classification of LCA groups, finite in
G/K (where K is the compact subgroup).

Group has non-compact connected components iff it has a non-zero
power of R. (alternatively: if it has a non-zero power of R, then the
generic and therefore everything is divisible).
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Questions

Essential continuity seems to be a strong regularizing condition for
strongly minimal groups, at least.

Question

Are non-locally modular pregeometries even possible in essentially
continuous strongly minimal sets?

(R,+) and (R2,+) cannot be extended to fields in the näıve way.

Question

Can a Hrushovski construction or something similar build an essentially
continuous strongly minimal set?
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Thank you
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Lies I

Really the open set is:

U(x) := ∀∀y
(
ρn(x , y) <

1

3
(ε− δ)

)
∨
(
ρn(x , y) >

2

3
(ε− δ)

)
,

where ∀∀x means ‘there exists x in some elementary extension.’
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Lies II

[U(x)]
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Abelianity I

Proposition

Strongly Minimal Groups are Abelian.

Lemma 1: Any type-definable proper subgroup in a strongly minimal
group is compact.

There must be some element g whose centralizer (subgroup of
elements that commute with g), C (g) is not all of the group. C (g) is
a zeroset, so by Lemma 1 point C (g) is a compact subgroup. The
orbit of g , gZ, is a subgroup of C (g), so g has compact order.

There is a natural bijection between C (g) \ G (right coset space) and
gG (set of conjugates of g). This bijection is furthermore definable
and uniformly bi-continuous.

Not hard to show that since C (g) is compact, C (g) \ G must not be
compact, implying that gG is not compact.
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Abelianity II

Lemma 2: If all elements of a group have ‘compact order’ and all
non-identity elements are approximately conjugate, then the group
has no more than two elements.

For any g , h not in the centralizer, gG and hG are definable,∗

non-compact sets, so they must overlap in sufficiently saturated
models. Therefore they are equal, since they are conjugacy classes.
This implies that they are conjugate in G/Z (where Z is the
centralizer). They also must still have compact order in G/Z so we
can apply Lemma 2, and we have that G/Z is finite, implying that G
is compact. Contradiction.
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