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Filters

Definition

A filter on a set I is a collection F ⊆ 2I \ {∅} that is closed under
supersets and finite intersections.
A filter is principal if it contains a singleton.

A filter represents a notion of ‘largeness.’ Example: The collection of
cofinite subsets of an infinite set I .

Filters were originally(?) introduced by Bourbaki as a generalization
of sequences in the context of topology:

Definition

For a topological space (X , τ), a filter F on X converges to the point x if
for every open neighborhood U 3 x , U ∈ F .

(X , τ) is Hausdorff if and only if every filter converges to at most one
point.
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Ultrafilters

Definition

An ultrafilter on I is a filter F with the property that for any J ⊆ I , either
J ∈ F or I \ J ∈ F .

Usually we mean non-principal ultrafilters.

(X , τ) is compact if and only if every ultrafilter converges.

Every filter can be extended to an ultrafilter (originally(?) shown by
Tarski). Proof: Zorn’s lemma.

While originally motivated by topology and set theory, ultrafilters
soon found applications in model theory (Skolem and later  Loś) but
also various parts of analysis.
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Discrete structures

Definition

A language L is a collection of constant symbols, relation symbols, and
function symbols (with prescribed arities).
A (discrete) L-structure is a set M together with interpreations of the
constant, relation, and function symbols in L.

Example: Ordered fields can are Lof -structures where Lof contains
the constant symbols 0 and 1, the binary relation symbol ≤, the unary
function symbol −x , and the binary function symbols x + y and x · y .

R and Q are ordered fields.

Definition

Two L-structures M and N are isomorphic if there is a function
f : M → N that respects all constant, relation, and function symbols of L.

R and Q are not isomorohpic Lof -structures.
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Ultraproducts and ultrapowers

Fix a family (Mi )i∈I of L-structures and an ultrafilter F on I .

Consider the set
∏

i∈I Mi and the equivalence relation

a ∼ b ⇔ {i ∈ I : a(i) = b(i)} ∈ F .

∼ respects relation and function symbols, so we can naturally regard
MF :=

∏
i∈I Mi/∼ as an L-structure. For example, R(a) holds in MF

if and only if {i ∈ I : R(ai ) holds in Mi} ∈ F .

MF is the ultraproduct of (Mi )i∈I (using F).

If Mi = M for all i ∈ I , it is called an ultrapower and is written MF .
There is a natural embedding ι of M into MF given by taking a ∈ M
to the ∼-class of the constant function a.

Intuition: Configurations that are finitely approximated in M are
realized in MF . Example: If N = (N,≤), then NF will (usually)
contain an element a satisfying n ≤ a for all n ∈ N.
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Doing discrete model theory backwards

The Keisler-Shelah theorem allows us to characterize first-order logic
in terms of ultrapowers.

Fix a class K of L-structures that is closed under ultraproducts.

Definition

Given L-structures M,N and n-tuples ā ∈ M and b̄ ∈ N, we say that
(M, ā) and (N, b̄) have the same n-type, and we write (M, ā) ≡ (N, b̄), if
there are ultrafilters F and G and an isomorphism f : MF → NG such that
f (ι(ā)) = ι(b̄).

For any (M, ā) and ultrafilter F , we have that (M, ā) ≡ (MF , ι(ā)).

≡ is an equivalence relation. We write Sn(K) to represent the
collection of ≡-classes of n-tuples, which we call n-types. We write
tp(M, ā) for the ≡-class of (M, ā).
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Type spaces in discrete logic

Sn(K) is a set.

≡ is compatible with ultraproducts in the following sense: If
(Mi , āi ) ≡ (Ni , b̄i ) for each i ∈ I , then (MF , āF ) ≡ (NF , b̄F ) for any
ultrafilter F on I .

Induces a topology on Sn(K) which is compact, Hausdorff, and totally
disconnected (i.e., Sn(K) is the Stone space of a Boolean algebra).

An n-formula is a clopen subset of Sn(K). Can also be thought of as
a continuous {0, 1}-valued function.

We write an n-formula as ϕ(x̄) or ϕ.

If tp(M, ā) is in ϕ(x̄), we write M |= ϕ(ā).
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Operations on formulas

We write ϕ ∧ ψ for the intersection of ϕ and ψ, ϕ ∨ ψ for the union,
and ¬ϕ for the complement.

There is a natural map π : Sn+1(K)→ Sn(K) which takes tp(M, āb)
to tp(M, ā).

This map is continuous and open, so for any (n + 1)-formula ϕ(x̄ , y),
the image π(ϕ(x̄ , y)) is an n-formula. We write the projection as
∃yϕ(x̄ , y).

The suggestions of this notation are correct (e.g., M |= ϕ ∧ ψ(ā) iff
M |= ϕ(ā) and M |= ψ(ā), M |= ∃yϕ(ā, y) if and only if there is a
b ∈ M such that M |= ϕ(ā, b), etc.).

Basic expressions from the language involving the variables x̄ are
equivalent to formulas (e.g., when K is the class of ordered fields,
there is a formula ϕ(x1x2x2) such that M |= ϕ(abc) if and only if
a + 1 ≤ b · c). These are called atomic formulas.

The operations on this slide generate all n-formulas for every n.
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Continuous logic
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Ultraproducts in analysis

At some point analysts realized that ultraproduct constructions had
applications in analysis.

The first(?) instance of this was in Gromov’s proof that finitely
generated groups of polynomial growth are nilpotent-by-finite.

Some other applications: Asymptotic properties of Banach spaces.
Many applications in C∗-algebras and von Neumann algebras (Connes
embedding problem). Construction of spherically complete
non-Archimedean valued fields.

Same intuition as before applies. Example: Dvoretzky’s theorem says
that in infinite-dimensional Banach spaces, there are arbitrarily good
approximations of Hilbert spaces of arbitrarily high dimension. This
can equivalently be equivalently stated (without explicit numerical
bounds) as: For any infinite-dimensional Banach space X and (a
typical) ultrafilter F , BF contains an infinite-dimensional subspace
isometrically isomorphic to a Hilbert space.
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Can we turn this into a kind of logic?

As early as the 60s, model theorists realized that there should be a
generalization of model theory to deal natively with real-valued
structures. Early work by Chang and Keisler on very general classes of
structures. Later work by Henson and Iovino (on Banach spaces in
particular) and then by Ben Yaacov and Usvyatsov.

Modern formulation was developed by Ben Yaacov, Berenstein,
Henson, and Usvyatsov. (Although, frankly, Chang and Keisler
deserve more credit.)

I will present continuous logic in the same way I presented discrete
logic, not because it is a good way to formalize continuous logic, but
because it preserves more intuition from discrete model theory. (Also
emphasizes the motivation from existing ultraproduct constructions in
analysis.)

Broad slogan: Whenever there is a notion of taking ultraproducts,
there is a ‘first-order theory’ lurking around.
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Metric structures

Definition (slightly non-standard)

A (metric) language L is a collection of constant symbols, relation
symbols, and function symbols (with prescribed arities).
A (metric) L-structure is a complete, bounded metric space (M, d)
together with interpreations of the constant, relation, and function
symbols in L. Relations are boundedly R-valued. Relations and functions
are uniformly continuous.

Requiring bounded metric spaces is a convention for the sake of
compatibility with ultraproducts. It is still possible to represent
unbounded structures (such as Banach spaces).

Example: (R, d ,+) where d(x , y) = |x−y |
1+|x−y | .

Definition

Two L-structures M and N are isomorphic if there is an isometry
f : M → N that respects all constant, relation, and function symbols of L.
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Ultraproducts and ultrapowers

Fix a family (Mi , di )i∈I of L-structures and an ultrafilter F on I .
Consider the set

∏
i∈I Mi and the extended pseudo-metric

dF (a, b) = lim
i→F

di (a(i), b(i)).

If we’re lucky, the equivalence relation a ∼ b ⇔ dF (a, b) = 0 will
respect relation and function symbols. If the metric and relations are
also bounded, we can regard MF :=

∏
i∈I Mi/ ∼ as an L-structure

with metric d = dF . When this happens, relations agree with limit:
RMF (a) = limi→F RMi (ai ).
MF is the ultraproduct of (Mi )i∈I (using F).
If Mi = M for all i ∈ I , this is an ultrapower, written MF . There is a
natural embedding ι : M → MF taking a to the ∼-class of the
constant function a.
Example of finite approximation intuition: If
M = (R, d = |x−y |

1+|x−y | ,+), then MF will contain an element a

satisfying d(a, 0) = 1.
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Doing continuous model theory backwards

Fix a class K of (metric) L-structures that is closed under ultraproducts.
In particular, all ultraproducts must exist.

Definition

Given L-structures M,N and n-tuples ā ∈ M and b̄ ∈ N, we say that
(M, ā) and (N, b̄) have the same n-type, and we write (M, ā) ≡ (N, b̄), if
there are ultrafilters F and G and an (isometric) isomorphism
f : MF → NG such that f (ι(ā)) = ι(b̄).

For any (M, ā) and ultrafilter F , we have that (M, ā) ≡ (MF , ι(ā)).

≡ is an equivalence relation. We write Sn(K) for the ≡-classes of
n-tuples, which we call n-types. tp(M, ā) is the ≡-class of (M, ā).
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Type spaces in continuous logic

Sn(K) is a set.

≡ is compatible with ultraproducts. This induces a topology on
Sn(K) which is compact and Hausdorff (i.e., Sn(K) is the Gelfand
dual of a commutative C∗-algebra). Sn(K) is not generally totally
disconnected.

An n-formula is a continuous function ϕ : Sn(K)→ R.
We write an n-formula as ϕ(x̄) or ϕ. We write M |= ϕ(ā) ≤ r to
mean that ϕ(tp(M, ā)) ≤ r . Likewise for <, =, etc. We also write
ϕM(ā) for ϕ(tp(M, ā)).

A complete theory T is the 0-type of a structure. We write Th(M)
for tp(M,∅), and M |= T for Th(M) = T . We say that M is a
model of T .

A class K is Mod(T ) := {M : M |= T} if and only if K is closed
under ultraproducts and ultraroots and S0(K) is a singleton. We write
Sn(T ) for Sn(Mod(T )).

James Hanson Intro to continuous logic Apr. 15, 2022 14 / 28



An example of a type space

Given an L-structure M and a set A ⊆ M, we write MA for the
LA-structure M with constants added naming each element of A. We
write TA for Th(MA).

We write Sn(A) for Sn(TA). The map that takes a ∈ A to tp(a) is
always a continuous injection.

Let M = (R, d ,+) as before, and let F be a (typical) ultrafilter. The
type space S1(MF ) looks (roughly) like this:

−500−499−498−497−496−495−494−493−492−491−490−489−488−487−486−485−484−483−482−481−480−479−478−477−476−475−474−473−472−471−470−469−468−467−466−465−464−463−462−461−460−459−458−457−456−455−454−453−452−451−450−449−448−447−446−445−444−443−442−441−440−439−438−437−436−435−434−433−432−431−430−429−428−427−426−425−424−423−422−421−420−419−418−417−416−415−414−413−412−411−410−409−408−407−406−405−404−403−402−401−400−399−398−397−396−395−394−393−392−391−390−389−388−387−386−385−384−383−382−381−380−379−378−377−376−375−374−373−372−371−370−369−368−367−366−365−364−363−362−361−360−359−358−357−356−355−354−353−352−351−350−349−348−347−346−345−344−343−342−341−340−339−338−337−336−335−334−333−332−331−330−329−328−327−326−325−324−323−322−321−320−319−318−317−316−315−314−313−312−311−310−309−308−307−306−305−304−303−302−301−300−299−298−297−296−295−294−293−292−291−290−289−288−287−286−285−284−283−282−281−280−279−278−277−276−275−274−273−272−271−270−269−268−267−266−265−264−263−262−261−260−259−258−257−256−255−254−253−252−251−250−249−248−247−246−245−244−243−242−241−240−239−238−237−236−235−234−233−232−231−230−229−228−227−226−225−224−223−222−221−220−219−218−217−216−215−214−213−212−211−210−209−208−207−206−205−204−203−202−201−200−199−198−197−196−195−194−193−192−191−190−189−188−187−186−185−184−183−182−181−180−179−178−177−176−175−174−173−172−171−170−169−168−167−166−165−164−163−162−161−160−159−158−157−156−155−154−153−152−151−150−149−148−147−146−145−144−143−142−141−140−139−138−137−136−135−134−133−132−131−130−129−128−127−126−125−124−123−122−121−120−119−118−117−116−115−114−113−112−111−110−109−108−107−106−105−104−103−102−101−100−99−98−97−96−95−94−93−92−91−90−89−88−87−86−85−84−83−82−81−80−79−78−77−76−75−74−73−72−71−70−69−68−67−66−65−64−63−62−61−60−59−58−57−56−55−54−53−52−51−50−49−48−47−46−45−44−43−42−41−40−39−38−37−36−35−34−33−32−31−30−29−28−27−26−25−24−23−22−21−20−19−18−17−16−15−14−13−12−11−10
−9

−8

−7

−6

−5

−4
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Operations on formulas I

For any continuous function F : Rk → R, we write F (ϕ1, . . . , ϕk) for
the obvious composition of functions (e.g., max(ϕ,ψ)).

If (ϕi )i<ω is a uniformly convergent sequence of n-formulas, we
write limi→∞ ϕi for the limit.

There is a natural map π : Sn+1(K)→ Sn(K) which takes tp(M, āb)
to tp(M, ā).

This map is continuous and open. This implies that for any
(n + 1)-formula ϕ, the function

ψ(p) = inf{ϕ(q) : π(q) = p}

is continuous on Sn(K). We write this formula as infy ϕ(x̄ , y). We
also write supy ϕ for − infy −ϕ.
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Operations on formulas II

The suggestion of the inf notation is correct: M |= infy ϕ(ā, y) ≤ r if
and only if inf{ϕM(ā, b) : b ∈ M} ≤ r .

Basic expressions involving variables, symbols in the language, and
the metric are equivalent to formulas (e.g., there is a formula ϕ(x1x2)
such that for any M, ϕM(ab) = d(a, b)).

The operations on this slide and the last generate all n-formulas for
every n.
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Some model theory
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Elementary substructures

Basic model theory typically generalizes to continuous logic (until it
doesn’t).

Definition

A substructure N of a structure M is an elementary substructure if
NN ≡ MN . We write N � M to signify this.

Prototypical example is M in MF .

Theorem (The Löwenheim-Skolem theorem)

For any structure M and A ⊆ M, there is N � M with A ⊆ N such that
the density character of N is no more than |A|+ |L|.

A general theme in continuous logic is that the correct way to count is
density character (where compact is ‘finite’). In model theory we often
want to count types, so we need a metric on type space.
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The metric on type space

For any type space Sn(T ), we get an (extended) metric

d(p, q) = inf{dM(ā, b̄) : ā, b̄ ∈ M |= T , tp(ā) = p, tp(b̄) = q}.

This metric has a lot of compatibility with the normal (compact) logic
topology:

The topology induced by d refines the logic topology.

For any closed set F and any ε > 0, the set F≤ε := {p : d(p,F ) ≤ ε}
is closed.

For any open set U and any ε > 0, the set U<ε := {p : d(p,U) < ε}
is open.

The maps π : Sn+1(T )→ Sn(T ) and tp : M → Sn(T ) are 1-Lipschitz.
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Definable sets

Definition

A closed set D ⊆ Sn(T ) is definable if the function p 7→ d(p,D) (on
Sn(T )) is an n-formula (i.e., continuous).

For a closed set D, TFAE:

D is definable.

For each ε > 0, D<ε is open.

For each ε > 0, D ⊆ intD<ε. (Interior is always in logic topology.)

D is a Hausdorff limit of logically open sets.

D admits relative quantification: For any (m + n)-formula ϕ(x̄ , ȳ),
there is an m-formula ψ(x̄) such that for any M |= T ,

ψM(ā) = inf{ϕM(ā, b̄) : b̄ ∈ M, tp(b̄) ∈ D}.

James Hanson Intro to continuous logic Apr. 15, 2022 21 / 28



Omitting types

Definition

A model M |= T realizes p ∈ Sn(T ) if there is ā ∈ M such that tp(ā) = p.
A type p ∈ Sn(T ) is atomic if {p} is definable.

Theorem (Omitting types)

(L countable) For any p ∈ Sn(T ), TFAE:

There is M |= T not realizing p.

There is an ε > 0 such that B≤ε(p) has empty logical interior.

p is not atomic.

Omitting partial types (i.e., closed subsets of Sn(T )) is generally very
complicated (Farah and Magidor).
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Prime and atomic models

Definition

M |= T is a prime model if for every N |= T , there is N0 � N isomorphic
to M.
M |= T is an atomic model if for every ā ∈ M, tp(ā) is atomic.

Theorem

(L countable) TFAE:

T has a prime model.

T has an atomic model.

For every n, atomic types are (logically) dense in Sn(T ).
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Categoricity I: The Ryll-Nardzewski theorem

Definition

For any cardinal κ, T is κ-categorical if T has a unique model of density
character κ up to isomorphism.

Theorem

(L countable) TFAE:

T is ω-categorical.

For each n, Sn(T ) is metrically compact (i.e., ‘finite’).

For each n, every p ∈ Sn(T ) is atomic.

Every M |= T is ‘approximately ω-saturated.’

In discrete logic, a countable theory T is ω-categorical if and only if Tā is
ω-categorical for a finite tuple ā. This fails in continuous logic. There is an
ω-categorical theory T such that Ta is not ω-categorical for some
parameter a. Relatedly, Vaught’s never-two theorem fails.
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Categoricity II: Morley’s theorem

A seminal result in discrete logic is Morley’s theorem: If a countable
complete theory T is κ-categorical for some uncountable κ, then it is
λ-categorical for every uncountable λ.

Theorem (Ben Yaacov; Shelah and Usvyatsov)

(L countable) Morley’s theorem holds in continuous logic.

To generalize Morley’s original proof, Ben Yaacov needed the correct
generalization of ω-stability.

Definition

T is κ-stable if for any M |= T and A ⊆ M with |A| ≤ κ, the metric
density character of S1(A) is no more than κ.

Ben Yaacov showed that uncountably categorical T are ω-stable.

Much of discrete stability theory generalizes to continuous logic (until
it doesn’t).
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Categoricity III: Baldwin and Lachlan

Baldwin and Lachlan sharpened the structural understanding of
uncountably categorical theories. One important consequence of their work
is that a countable complete theory T is uncountably categorical if and
only it is ω-stable and has no Vaughtian pairs.

Definition

A Vaughtian pair is a pair M and N with M ≺ N such that for some
definable set D, D(M) = D(N) with D(M) non-compact.

Theorem (Noquez)

If T is uncountably categorical, it has no Vaughtian pairs.

Counterexample (H.)

There is an ω-stable T with a strong form of no Vaughtian pairs that is
not uncountably categorical.
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Strongly minimal sets

A core aspect of Baldwin and Lachlan’s structural understanding is that of
a strongly minimal set.

Definition (Noquez)

A definable set D ⊆ Sn(T ) is strongly minimal if for any M |= T , D(M) is
non-compact and Sn(D(M)) contains a unique type not realized in D(M).
T is strongly minimal if {d(x , x) = 0} is.

Noquez asked whether there are any ‘new’ strongly minimal sets in
continuous logic. (H.) Th(R, d ,+) is strongly minimal and does not
interpret any infinite discrete structures.

Every discrete uncountably categorical theory has a strongly minimal
set that ‘controls’ all models of the theory (via the no Vaughtian pairs
condition).

The theory of (the unit balls of) infinite-dimensional Hilbert spaces is
uncountably categorical but has no strongly minimal sets.
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Can we understand uncountably categorical theories?

Strongly minimal sets are simple because they have a good notion of
dimension, but so do Hilbert spaces.

Hilbert spaces are essentially the only known example of this
phenomenon.

Shelah and Usvyatsov showed that any uncountably categorical
expansion of (the unit ball of) a Banach space is somehow
‘controlled’ by a simple Hilbert space.

This leaves us with two questions:

Can we find examples of uncountably categorical continuous theories
that don’t contain strongly minimal sets and are somehow
fundamentally different from Hilbert spaces?

Can we get a clear structural understanding of uncountably categorical
continuous theories similar to that of Baldwin and Lachlan?
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Thank you
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