Generic Stability and Randomizations

James Hanson

Joint work with Gabriel Conant and Kyle Gannon.

April 6, 2022 2022 Joint Mathematics Meetings ASL Special Session on Model-theoretic Classification Program

- A Keisler measure µ(x) (over parameters A) is a function
 µ : {Boolean algebra of A-formulas in x} → [0, 1] that obeys the standard laws of probability.
- Equivalently $\mu(x)$ can be thought of as a regular Borel probability measure on the relevant Stone space.
- 'A process to randomly choose a type.'
- Invented by Keisler to study forking in NIP theories.
- Measures are a generalization of types: Any type p(x) induces a Dirac measure: $\delta_p(\varphi) = \begin{cases} 1 & \varphi \in p \\ 0 & \varphi \notin p \end{cases}$.

Fix a first-order theory T with monster model \mathfrak{C} .

A global type $p(x) \in S(\mathfrak{C})$ is *A-invariant* if each formula $\varphi(x, b)$'s membership in p(x) only depends on $\varphi(x, y)$ and tp(b/A).

For
$$q \in S_y(A)$$
, $F_p^{\varphi}(q) = \begin{cases} 1 & \varphi(x,b) \in p \text{ for some/any } b \models q \\ 0 & \varphi(x,b) \notin p \text{ for some/any } b \models q \end{cases}$.

Invariant types play important roles in stable and NIP theories.

• A global measure $\mu(x)$ is *A*-invariant if $\mu(\varphi(x, b))$ only depends on $\varphi(x, y)$ and $\operatorname{tp}(b/A)$.

For
$$q \in S_y(A)$$
, $F^{\varphi}_{\mu}(q) = \mu(\varphi(x, b))$ for some/any $b \models q$.

- Given A-invariant types p(x) and q(y), p ⊗ q(x, y) is the A-invariant type that corresponds to 'realizing q then realizing p over that.' We write p^{⊗2} = p ⊗ p, p^{⊗3} = p ⊗ p ⊗ p, etc.
- $(a_i)_{i < \omega}$ is a Morley sequence in p over B if $a_{<\omega} \models p^{\otimes \omega} \upharpoonright B$.
- Uniquely determined by the criterion $a_i \models p \upharpoonright Ba_{< i}$ for all $i < \omega$.
- Given A-invariant measures μ(x) and ν(y), μ ⊗ ν(x, y) is the A-invariant measure that corresponds to 'realizing ν then realizing μ over that.'

The F^{φ}_{μ} specifying μ can be very nasty. Can also be nice:

- μ is *definable* if $F^{\varphi}_{\mu}: S_{y}(A) \rightarrow [0,1]$ is continuous for every $\varphi(x,y)$
- μ is finitely satisfiable (in a small model) if for any $\varphi(x, b)$ with $\mu(\varphi(x, b)) > 0$, there is $a \in A$ such that $\models \varphi(a, b)$
- *dfs* iff definable and finitely satisfiable.
- A type p is generically stable if whenever any Morley sequence in p behaves like a Morley sequence in a stable theory: If a_{<ω} ⊨ p^{⊗ω}, {i < ω : φ(a_i, b)} is always either finite or cofinite. Entails that p is the average type of any such sequence.

Some facts:

- T is stable \Leftrightarrow every global type is generically stable.
- Generically stable \Rightarrow dfs.
- (T NIP) dfs \Rightarrow generically stable.

In NIP theories, dfs measures ought to be 'generically stable.'

Definition Idea (Sketch)

A measure μ is a frequency interpretation measure (or fim measure) if whenever $a_i \models \mu \upharpoonright Aa_{< i}$ for all $i < \omega$, the quantity $\frac{1}{n} |\{i < n : \varphi(a_i, b)\}|$ limits to $\mu(\varphi(x, b))$ with probability 1.

- A type is generically stable if and only if it is fim.
- fim \Rightarrow dfs.
- (Hrushovski, Pillay, Simon) If T is NIP, dfs \Rightarrow fim.

Given a theory T, there is a corresponding *randomization* T^R , a continuous theory formalizing the idea of 'random variables with values in a model of T.'

- Every (discrete or continuous) formula φ in T has a corresponding expected value formula E[φ] in T^R.
- Types in $S(T^R)$ correspond precisely to measures in T (over \emptyset).

What about parameters? What about invariant types and measures?

- For any A-definable measure μ , there is a unique corresponding \varnothing -definable type r_{μ} in $(T_A)^R$ satisfying $F^{\varphi}_{\mu}(q) = F^{E[\varphi]}_{r_{\mu}}(\delta_q)$. (Just extend defining schema linearly.)
- (Conant, Gannon, H.) There is a dfs type p with the property that rp is not finitely satisfiable in any small set.
- fim and generic stability?

For any definable measure $\nu(x)$, let

$$\chi^{\varphi}_{\nu,n}(x_1 \dots x_n) = \sup_{y} \left| \frac{1}{n} (\underbrace{\varphi(x_1, y) + \dots + \varphi(x_n, y)}_{\text{True is 1.}\atop \text{False is 0.}}) - F^{\varphi}_{\nu}(\operatorname{tp}(y/A)) \right|.$$

- $\chi^{\varphi}_{\nu,n}(\bar{x})$ measures how well \bar{x} approximates the behavior of $\nu(x)$ on average for the formula $\varphi(x, y)$.
- $\chi^{\varphi}_{\nu,n}(\bar{x})$ is a formula in the sense of continuous logic (because $\nu(x)$ is definable).

fim and Generic Stability in the Randomization II

Fix an A-definable measure $\mu(x)$ in T. Let $r_{\mu}(x)$ be the corresponding type in $(T_A)^R$.

- $\mu(x)$ is fim iff for every $\varphi(x, y)$, $\lim_{n\to\infty} \int \chi^{\varphi}_{\mu,n}(\bar{x}) d\mu^{\otimes n}(\bar{x}) = 0$.
- $r_{\mu}(x)$ is generically stable iff for every $\varphi(x, y)$ (from *T*), $\lim_{n\to\infty} r_{\mu}^{\otimes n} \left(\chi_{r_{\mu},n}^{E[\varphi]}(\bar{x})\right) = 0.$ (Uses QE down to $E[\varphi]$.)

Some calculation gives:

$$r_{\mu}^{\otimes n}\left(\chi_{r_{\mu},n}^{E[\varphi]}(\bar{x})\right) = r_{\mu}^{\otimes n}\left(\sup_{y}\left|E\left[\frac{\varphi(x_{1}y) + \dots + \varphi(x_{n}y)}{n} - F_{\nu}^{\varphi}(y)\right]\right|\right)$$
$$\int \chi_{\mu,n}^{\varphi}d\mu^{\otimes n} = r_{\mu}^{\otimes n}\left(\sup_{y}E\left[\left|\frac{\varphi(x_{1}y) + \dots + \varphi(x_{n}y)}{n} - F_{\nu}^{\varphi}(y)\right|\right]\right)$$

First \leq second by Jensen's inequality, so if μ is fim, then r_{μ} is generically stable, but will it reverse?

Thank you