Separable and inseparable Gromov-Hausdorff categoricity in continuous logic

James Hanson

Department of Mathematics University of Wisconsin-Madison

Graduate Student Conference in Logic XIX, 2018

James Hanson GH Categoricity

ヘロト ヘアト ヘヨト ヘ

Outline

Background

- Continuous logic
- Gromov-Hausdorff distance
- 2 Approximate categoricity
 - Separable approximate categoricity
 - Inseparable approximate categoricity
- 3 New Phenomena
 - Do ω-categorical, strictly ω₁-GH-categorical theories exist?
 - Elementary Gromov-Hausdorff distance

ヘロト ヘアト ヘヨト

Continuous logic Gromov-Hausdorff distance

Syntax of continuous logic

- Continuous logic is a generalization of first-order logic.
 "Fuzzy logic on metric spaces."
- Connectives are arbitrary continuous functions from [0, 1]ⁿ to [0, 1]. Quantifiers are sup and inf.
- A signature/language is mostly as it is in first-order logic (list of constant symbols and relation and function symbols with designated arities), except...
- A crucial new element is that each relation R or function f symbol has a fixed modulus of uniform continuity α_R or α_f that is *specified as part of the language.*
- This means that every formula is uniformly continuous and the modulus of uniform continuity can be computed *syntactically*.

・ロット (雪) () () () ()

Continuous logic Gromov-Hausdorff distance

Syntax of continuous logic

- Continuous logic is a generalization of first-order logic.
 "Fuzzy logic on metric spaces."
- Connectives are arbitrary continuous functions from [0, 1]ⁿ to [0, 1]. Quantifiers are sup and inf.
- A signature/language is mostly as it is in first-order logic (list of constant symbols and relation and function symbols with designated arities), except...
- A crucial new element is that each relation R or function f symbol has a fixed modulus of uniform continuity α_R or α_f that is *specified as part of the language.*
- This means that every formula is uniformly continuous and the modulus of uniform continuity can be computed *syntactically*.

ヘロン ヘアン ヘビン ヘビン

Continuous logic Gromov-Hausdorff distance

Syntax of continuous logic

- Continuous logic is a generalization of first-order logic.
 "Fuzzy logic on metric spaces."
- Connectives are arbitrary continuous functions from [0, 1]ⁿ to [0, 1]. Quantifiers are sup and inf.
- A signature/language is mostly as it is in first-order logic (list of constant symbols and relation and function symbols with designated arities), except...
- A crucial new element is that each relation R or function f symbol has a fixed modulus of uniform continuity α_R or α_f that is *specified as part of the language.*
- This means that every formula is uniformly continuous and the modulus of uniform continuity can be computed *syntactically*.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Continuous logic Gromov-Hausdorff distance

Syntax of continuous logic

- Continuous logic is a generalization of first-order logic.
 "Fuzzy logic on metric spaces."
- Connectives are arbitrary continuous functions from [0, 1]ⁿ to [0, 1]. Quantifiers are sup and inf.
- A signature/language is mostly as it is in first-order logic (list of constant symbols and relation and function symbols with designated arities), except...
- A crucial new element is that each relation *R* or function *f* symbol has a fixed modulus of uniform continuity α_R or α_f that is *specified as part of the language.*
- This means that every formula is uniformly continuous and the modulus of uniform continuity can be computed *syntactically*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Continuous logic Gromov-Hausdorff distance

Syntax of continuous logic

- Continuous logic is a generalization of first-order logic.
 "Fuzzy logic on metric spaces."
- Connectives are arbitrary continuous functions from [0, 1]ⁿ to [0, 1]. Quantifiers are sup and inf.
- A signature/language is mostly as it is in first-order logic (list of constant symbols and relation and function symbols with designated arities), except...
- A crucial new element is that each relation R or function f symbol has a fixed modulus of uniform continuity α_R or α_f that is *specified as part of the language.*
- This means that every formula is uniformly continuous and the modulus of uniform continuity can be computed *syntactically*.

ヘロン 人間 とくほ とくほ とう

3

Continuous logic Gromov-Hausdorff distance

Semantics of continuous logic

- For a continuous language L, a metric L-structure, M, is a complete metric space of diameter at most 1 together with points, [0, 1]-valued predicates, and functions corresponding to the constant, relation, and function symbols of L.
- The relations and functions need to obey the corresponding moduli of uniform continuity.
- For an *L*-sentence φ, we say that 𝔐 ⊨ φ if φ evaluates to 0 when computed in 𝔐. (Rationale: *d*(*x*, *y*) = 0 is the same thing as *x* = *y*.)

イロン 不得 とくほ とくほ とうほ

Continuous logic Gromov-Hausdorff distance

Semantics of continuous logic

- For a continuous language L, a metric L-structure, M, is a complete metric space of diameter at most 1 together with points, [0, 1]-valued predicates, and functions corresponding to the constant, relation, and function symbols of L.
- The relations and functions need to obey the corresponding moduli of uniform continuity.
- For an *L*-sentence φ, we say that 𝔐 ⊨ φ if φ evaluates to 0 when computed in 𝔐. (Rationale: *d*(*x*, *y*) = 0 is the same thing as *x* = *y*.)

<ロ> (四) (四) (三) (三) (三)

Continuous logic Gromov-Hausdorff distance

Categoricity

Definition

A continuous first-order theory T is κ -categorical for cardinality κ if it only has one model of metric density character κ up to isomorphism.

Theorem (Ben Yaacov, Berenstein, Henson, Usvyatsov)

A countable theory T is ω -categorical iff every \emptyset -type is principal iff every $S_n(T)$ is metrically compact (think "finite").

Theorem (Ben Yaacov; Shelah, Usvyatsov)

A countable theory T is κ -categorical for some $\kappa \ge \omega_1$, then it is λ -categorical for all $\lambda \ge \omega_1$.

イロン イロン イヨン イヨン

Continuous logic Gromov-Hausdorff distance

Categoricity

Definition

A continuous first-order theory T is κ -categorical for cardinality κ if it only has one model of metric density character κ up to isomorphism.

Theorem (Ben Yaacov, Berenstein, Henson, Usvyatsov)

A countable theory T is ω -categorical iff every \emptyset -type is principal iff every $S_n(T)$ is metrically compact (think "finite").

Theorem (Ben Yaacov; Shelah, Usvyatsov)

A countable theory T is κ -categorical for some $\kappa \ge \omega_1$, then it is λ -categorical for all $\lambda \ge \omega_1$.

イロト イポト イヨト イヨト

э

Continuous logic Gromov-Hausdorff distance

Categoricity

Definition

A continuous first-order theory T is κ -categorical for cardinality κ if it only has one model of metric density character κ up to isomorphism.

Theorem (Ben Yaacov, Berenstein, Henson, Usvyatsov)

A countable theory T is ω -categorical iff every \emptyset -type is principal iff every $S_n(T)$ is metrically compact (think "finite").

Theorem (Ben Yaacov; Shelah, Usvyatsov)

A countable theory T is κ -categorical for some $\kappa \ge \omega_1$, then it is λ -categorical for all $\lambda \ge \omega_1$.

イロン イロン イヨン イヨン

э

Background

Approximate categoricity New Phenomena Continuous logic Gromov-Hausdorff distance

The Hausdorff metric

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Continuous logic Gromov-Hausdorff distance

The Gromov-Hausdorff metric

Definition

For metric spaces X and Y,

 $d_{GH}(X, Y) = \inf\{d_{H}(\alpha(X), \beta(Y)) | \alpha : X \to Z, \beta : Y \to Z\},\$

for α , β isometric embeddings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Continuous logic Gromov-Hausdorff distance

Logical aspects of Gromov-Hausdorff distance

- $d_{GH}(X, Y) = 0$ does not imply $X \cong Y$.
- $d_{GH}(X, Y) = 0$ does imply :
 - $X \equiv Y$
 - *X* and *Y* have the same density character and covering numbers (i.e. they're 'the same size').
 - For any non-principal ultrafilter \mathcal{F} on ω , $X^{\omega}/\mathcal{F} \cong Y^{\omega}/\mathcal{F}$.
- *d_{GH}* can also be defined in terms of 'correlations' which can be seen as very strong back-and-forth strategies.
- Has natural generalization to Lipschitz languages (although language dependent), but also...

Theorem (H.)

Continuous logic Gromov-Hausdorff distance

Logical aspects of Gromov-Hausdorff distance

- $d_{GH}(X, Y) = 0$ does not imply $X \cong Y$.
- $d_{GH}(X, Y) = 0$ does imply :
 - *X* ≡ *Y*
 - X and Y have the same density character and covering numbers (i.e. they're 'the same size').
 - For any non-principal ultrafilter \mathcal{F} on ω , $X^{\omega}/\mathcal{F} \cong Y^{\omega}/\mathcal{F}$.
- *d_{GH}* can also be defined in terms of 'correlations' which can be seen as very strong back-and-forth strategies.
- Has natural generalization to Lipschitz languages (although language dependent), but also...

Theorem (H.)

Logical aspects of Gromov-Hausdorff distance

- $d_{GH}(X, Y) = 0$ does not imply $X \cong Y$.
- $d_{GH}(X, Y) = 0$ does imply :
 - *X* ≡ *Y*
 - X and Y have the same density character and covering numbers (i.e. they're 'the same size').
 - For any non-principal ultrafilter \mathcal{F} on ω , $X^{\omega}/\mathcal{F} \cong Y^{\omega}/\mathcal{F}$.
- *d_{GH}* can also be defined in terms of 'correlations' which can be seen as very strong back-and-forth strategies.
- Has natural generalization to Lipschitz languages (although language dependent), but also...

Theorem (H.)

Logical aspects of Gromov-Hausdorff distance

- $d_{GH}(X, Y) = 0$ does not imply $X \cong Y$.
- $d_{GH}(X, Y) = 0$ does imply :
 - $X \equiv Y$
 - X and Y have the same density character and covering numbers (i.e. they're 'the same size').
 - For any non-principal ultrafilter \mathcal{F} on ω , $X^{\omega}/\mathcal{F} \cong Y^{\omega}/\mathcal{F}$.
- *d_{GH}* can also be defined in terms of 'correlations' which can be seen as very strong back-and-forth strategies.
- Has natural generalization to Lipschitz languages (although language dependent), but also...

Theorem (H.)

Continuous logic Gromov-Hausdorff distance

Logical aspects of Gromov-Hausdorff distance

- $d_{GH}(X, Y) = 0$ does not imply $X \cong Y$.
- $d_{GH}(X, Y) = 0$ does imply :
 - $X \equiv Y$
 - X and Y have the same density character and covering numbers (i.e. they're 'the same size').
 - For any non-principal ultrafilter \mathcal{F} on ω , $X^{\omega}/\mathcal{F} \cong Y^{\omega}/\mathcal{F}$.
- *d_{GH}* can also be defined in terms of 'correlations' which can be seen as very strong back-and-forth strategies.
- Has natural generalization to Lipschitz languages (although language dependent), but also...

Theorem (H.)

Separable approximate categoricity Inseparable approximate categoricity

イロト イポト イヨト イヨト

Weak Ryll-Nardzewski characterization

Definition

A theory *T* is κ -GH-categorical if for any two $\mathfrak{M}, \mathfrak{N} \models T$ with metric density character κ , $d_{GH}(\mathfrak{M}, \mathfrak{N}) = 0$.

Example of ω -GH-categorical: 'Dense discrete pairs.'

Theorem (H., but essentially Ben Yaacov)

For a countable theory T:

- If every Ø-type is 'GH-principal,' then T is ω-GH-categorical.
- A countable theory T is ω-GH-categorical if and only if every ā-type is 'weakly GH-principal' for every finite tuple ā.

The first converse does fail.

Separable approximate categoricity Inseparable approximate categoricity

イロン イロン イヨン イヨン

Weak Ryll-Nardzewski characterization

Definition

A theory *T* is κ -GH-categorical if for any two $\mathfrak{M}, \mathfrak{N} \models T$ with metric density character κ , $d_{GH}(\mathfrak{M}, \mathfrak{N}) = 0$.

Example of ω -GH-categorical: 'Dense discrete pairs.'

Theorem (H., but essentially Ben Yaacov)

For a countable theory T:

- If every Ø-type is 'GH-principal,' then T is ω-GH-categorical.
- A countable theory T is ω-GH-categorical if and only if every ā-type is 'weakly GH-principal' for every finite tuple ā.

The first converse does fail.

Separable approximate categoricity Inseparable approximate categoricity

Morley's theorem?

- Example of an ω_1 -GH-categorical theory: 'sin/cos fenceposts.'
- The 'hard' direction works:

Theorem (H.)

- If a countable theory T is κ-GH-categorical for some κ ≥ ω₁, then every model 𝔐 with metric density character κ is 'GH-saturated.'
- If every M ⊨ T with metric density character κ is 'GH-saturated' for some κ ≥ ω₁, then the same is true for every λ ≥ ω₁.
- The 'easy' direction (every κ sized model is GH-saturated ⇒ T is κ-GH-categorical) is entirely unclear.
- Problem with 'accumulation of error' at µ_a, _a, _a, _a, _a, _a

Separable approximate categoricity Inseparable approximate categoricity

Morley's theorem?

- Example of an ω₁-GH-categorical theory: 'sin/cos fenceposts.'
- The 'hard' direction works:

Theorem (H.)

- If a countable theory T is κ-GH-categorical for some κ ≥ ω₁, then every model 𝔐 with metric density character κ is 'GH-saturated.'
- If every M ⊨ T with metric density character κ is 'GH-saturated' for some κ ≥ ω₁, then the same is true for every λ ≥ ω₁.
- The 'easy' direction (every κ sized model is GH-saturated ⇒ T is κ-GH-categorical) is entirely unclear.

Separable approximate categoricity Inseparable approximate categoricity

Morley's theorem?

- Example of an ω₁-GH-categorical theory: 'sin/cos fenceposts.'
- The 'hard' direction works:

Theorem (H.)

- If a countable theory T is κ-GH-categorical for some κ ≥ ω₁, then every model 𝔐 with metric density character κ is 'GH-saturated.'
- If every M ⊨ T with metric density character κ is 'GH-saturated' for some κ ≥ ω₁, then the same is true for every λ ≥ ω₁.
- The 'easy' direction (every κ sized model is GH-saturated \Rightarrow *T* is κ -GH-categorical) is entirely unclear.
- Problem with 'accumulation of error' at \u03c6₁, \u03c6₂, \

Do ω -categorical, strictly ω_1 -GH-categorical theories exist? Elementary Gromov-Hausdorff distance

Which combinations are known to exist?

	ω_1 -cat.	Strictly	N/A
		ω_1 -GH-cal.	
ω -cat.	Discrete set	?????	DLO
Strictly	Pairs	Tagged sin/cos	Dense
ω -GH-cat.	limiting to 0	fenceposts	discrete pairs
N/A	Q-vector	sin/cos	ZFC
	space	fenceposts	

 In the very simple case that the metric is uniformly discrete, the missing square is provably impossible.

Related discrete model theory question: Does there exist a sequence of countable languages

 *L*₀ ⊆ *L*₁ ⊆ ··· ⊆ ⋃_{n<ω} *L*_n = *L* and an *L*-theory *T* such that
 T is ω-categorical, *T* is not ω₁-categorical, but for every
 n < ω, *T* ↾ *L*_n is ω₁-categorical?

Do ω -categorical, strictly ω_1 -GH-categorical theories exist? Elementary Gromov-Hausdorff distance

Which combinations are known to exist?

	ω_1 -cat.	Strictly ω_1 -GH-cat.	N/A
ω -cat.	Discrete set	?????	DLO
Strictly	Pairs	Tagged sin/cos	Dense
ω -GH-cat.	limiting to 0	fenceposts	discrete pairs
N/A	Q-vector	sin/cos	ZFC
	space	fenceposts	

• In the very simple case that the metric is uniformly discrete, the missing square is provably impossible.

Related discrete model theory question: Does there exist a sequence of countable languages

 *L*₀ ⊆ *L*₁ ⊆ ··· ⊆ ⋃_{n<ω} *L*_n = *L* and an *L*-theory *T* such that
 T is ω-categorical, *T* is not ω₁-categorical, but for every
 n < ω, *T* ↾ *L*_n is ω₁-categorical?

Do ω -categorical, strictly ω_1 -GH-categorical theories exist? Elementary Gromov-Hausdorff distance

Which combinations are known to exist?

	ω_1 -cat.	Strictly	N/A
		ω_1 -GH-cat.	
ω -cat.	Discrete set	?????	DLO
Strictly	Pairs	Tagged sin/cos	Dense
ω -GH-cat.	limiting to 0	fenceposts	discrete pairs
N/A	Q-vector	sin/cos	ZFC
	space	fenceposts	

- In the very simple case that the metric is uniformly discrete, the missing square is provably impossible.
- Related discrete model theory question: Does there exist a sequence of countable languages

 *L*₀ ⊆ *L*₁ ⊆ ··· ⊆ ⋃_{n<ω} *L*_n = *L* and an *L*-theory *T* such that
 T is ω-categorical, *T* is not ω₁-categorical, but for every
 n < ω, *T* ↾ *L*_n is ω₁-categorical?

Do ω -categorical, strictly ω_1 -GH-categorical theories exist? Elementary Gromov-Hausdorff distance

The elementary Gromov-Hausdorff metric

Definition

For metric structures \mathfrak{M} and \mathfrak{N} ,

 $d_{\preceq GH}(\mathfrak{M},\mathfrak{N}) = \inf\{d_{H}(\alpha(\mathfrak{M}),\beta(\mathfrak{N})) | \alpha : \mathfrak{M} \preceq \mathfrak{C}, \beta : \mathfrak{N} \preceq \mathfrak{C}\},\$

for α , β elementary embeddings.

Again, $d_{\preceq GH}(\mathfrak{M}, \mathfrak{N}) = 0$ does not imply $\mathfrak{M} \cong \mathfrak{N}$, but...

Theorem (H.)

For any infinite κ , approximate κ -categoricity with regards to $d_{\leq GH}$ implies κ -categoricity.

Do ω -categorical, strictly ω_1 -GH-categorical theories exist? Elementary Gromov-Hausdorff distance

The elementary Gromov-Hausdorff metric

Definition

For metric structures \mathfrak{M} and \mathfrak{N} ,

 $d_{\preceq GH}(\mathfrak{M},\mathfrak{N}) = \inf\{d_{H}(\alpha(\mathfrak{M}),\beta(\mathfrak{N})) | \alpha : \mathfrak{M} \preceq \mathfrak{C}, \beta : \mathfrak{N} \preceq \mathfrak{C}\},\$

for α , β elementary embeddings.

Again, $d_{\preceq GH}(\mathfrak{M}, \mathfrak{N}) = 0$ does not imply $\mathfrak{M} \cong \mathfrak{N}$, but...

Theorem (H.)

For any infinite κ , approximate κ -categoricity with regards to $d_{\leq GH}$ implies κ -categoricity.

Do ω -categorical, strictly ω_1 -GH-categorical theories exist? Elementary Gromov-Hausdorff distance

The elementary Gromov-Hausdorff metric

Definition

For metric structures \mathfrak{M} and \mathfrak{N} ,

 $d_{\preceq GH}(\mathfrak{M},\mathfrak{N}) = \inf\{d_{H}(\alpha(\mathfrak{M}),\beta(\mathfrak{N})) | \alpha : \mathfrak{M} \preceq \mathfrak{C}, \beta : \mathfrak{N} \preceq \mathfrak{C}\},\$

for α , β elementary embeddings.

Again, $d_{\prec GH}(\mathfrak{M}, \mathfrak{N}) = 0$ does not imply $\mathfrak{M} \cong \mathfrak{N}$, but...

Theorem (H.)

For any infinite κ , approximate κ -categoricity with regards to $d_{\leq GH}$ implies κ -categoricity.

Do ω -categorical, strictly ω_1 -GH-categorical theories exist? Elementary Gromov-Hausdorff distance

The elementary Gromov-Hausdorff metric

Definition

For metric structures \mathfrak{M} and \mathfrak{N} ,

 $d_{\preceq GH}(\mathfrak{M},\mathfrak{N}) = \inf\{d_{H}(\alpha(\mathfrak{M}),\beta(\mathfrak{N})) | \alpha : \mathfrak{M} \preceq \mathfrak{C}, \beta : \mathfrak{N} \preceq \mathfrak{C}\},\$

for α , β elementary embeddings.

Again, $d_{\prec GH}(\mathfrak{M}, \mathfrak{N}) = 0$ does not imply $\mathfrak{M} \cong \mathfrak{N}$, but...

Theorem (H.)

For any infinite κ , approximate κ -categoricity with regards to $d_{\leq GH}$ implies κ -categoricity.