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Continuous Logic

Generalization of first-order logic for metric structures: Complete
bounded metric spaces with bounded uniformly continuous R-valued
predicates and uniformly continuous functions.

These restrictions can be motivated by compatibility with
ultraproducts.

Formulas are real valued with sup and inf as quantifiers and arbitrary
continuous functions F : Rk → R for k ≤ ω as connectives.

Formulas are closed under uniform limits up to logical equivalence.

Example: A structure M satisfies
supxyz max{d(x , y), d(y , z)} − d(x , z) ≤ 0 if and only if (M, d) is an
ultrametric space (i.e. ∀xyz(d(x , z) ≤ max{d(x , y), d(y , z)})).

Zeroset of a formula is the set of all tuples where it evaluates to 0.
(Also refers to corresponding set of types.)
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Definable Sets

Zerosets are analogous to countably type-definable sets in discrete logic,
not definable sets.

Definition

A definable set is a zeroset whose distance predicate is given by a formula.

Precisely what is required for relative quantification: supx∈D ϕ(x).

Characterized by compatibility with ultrapowers: D(MU ) = D(M)U .

Is equivalent to ordinary definition in discrete structures.

Not every formula corresponds to a definable set!

Not closed under intersections!
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Type Spaces in Continuous Logic

Given a continuous first-order theory T and a tuple of free variables x̄ , the
set of real-valued formulas with free variables among x̄ modulo logical
equivalence over T form a Banach algebra.

The Gelfand spectrum of this Banach algebra, written Sx̄(T ) or Sn(T ), is
the space of n-types over T .

Sn(T ) is compact and Hausdorff.

Sn(T ) may fail to be zero-dimensional.

Continuous function Sn(T )→ R correspond precisely to formulas
with free variables among x̄ (modulo T ).

Points (called types) are maximal consistent sets of real values for
formulas.
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The Metric on Type Space

For types p, q ∈ Sn(T ),

d(p, q) = inf{dM(ā, b̄) : M |= p(ā), q(b̄)}.

d is a metric that refines the normal topology on Sn(T ).

Similar to the relationship between weak* and norm topologies on the
unit ball of dual Banach spaces.

A closed subset D ⊆ Sx̄(T ) is definable if and only if D<ε is open for
every ε > 0.
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Definable Sets Can Be Poorly Behaved

d = 1

d = 1

[0, 1] with a discrete metric has no non-trivial definable sets.

There is also a type space homeomorphic to [0, 1] with
d(x , y) = max{x , y} for x 6= y . Has precisely 1 non-trivial definable set.

Theorem (H.)

Every finite lattice with more than 1 element is the partial order of
definable sets in some type space.

Idea: Build a circuit.
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Dictionaric Type Spaces I

Recall that N is a neighborhood of p if p ∈ intN.

Definition (H.)

A type space is dictionaric if it has a basis of definable neighborhoods.

Examples: Discrete theories and randomizations of discrete theories.
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Dictionaric Type Spaces II

Theorem (H.)

The following are equivalent:

1 Sn(T ) is dictionaric.

2 Definable sets separate disjoint closed subsets of Sn(T ).

3 For every disjoint closed F ,G ⊆ Sn(T ), there is a definable set D
such that either F ⊆ D and D ∩ G = ∅ or G ⊆ D and D ∩ F = ∅.

4 Sn(T ) has a network of definable sets (i.e. for every p ∈ U ⊆ Sn(T ),
there is a definable set D such that p ∈ D ⊆ U).

5 For every ε > 0, Sn(T ) has a basis of open sets U satisfying
clU ⊆ U<ε.

2

F GD E

34

U
p

D

5

UclUU<ε

X
p q
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Nice Properties of Dictionaric Type Spaces I

Proposition (Extension)

If Sn(T ) is dictionaric and G ⊆ F ⊆ Sn(T ) are closed sets such that G is
‘relatively definable in F ’ (for every ε > 0, G ⊆ intFG

<ε), then there is a
definable set D ⊆ Sn(T ) such that D ∩ F = G .

F

G

D

James Hanson (UW Madison) Definability and Categoricity April 21, 2020 10 / 29



Nice Properties of Dictionaric Type Spaces I

Proposition (Extension)

If Sn(T ) is dictionaric and G ⊆ F ⊆ Sn(T ) are closed sets such that G is
‘relatively definable in F ’ (for every ε > 0, G ⊆ intFG

<ε), then there is a
definable set D ⊆ Sn(T ) such that D ∩ F = G .

F

GD

James Hanson (UW Madison) Definability and Categoricity April 21, 2020 10 / 29



Nice Properties of Dictionaric Type Spaces II

Proposition (Hereditariness to Definable Subsets)

If Sn(T ) is dictionaric and D ⊆ Sn(T ) is definable, then D is dictionaric as
well.
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Nice Properties of Dictionaric Type Spaces III

Proposition (Approximate Intersection)

If Sn(T ) is dictionaric, D ⊆ Sn(T ) is definable, and F ⊆ U ⊆ Sn(T ) are
closed and open, respectively, then there is a definable set E such that
F ⊆ E ⊆ U and D ∩ E is definable.

D

U

F

E

D ∩ E
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Generic Separators

Let X be a normal topological space. An ordered separator is an ordered
pair of disjoint open sets. An ordered separator (U,V ) is strict if
clU ∩ clV = ∅.

Definition (H.)

Give a set of ordered separators P, the separator game with payoff set P is
a game in which two players alternate playing strict separators (Ui ,Vi )
satisfying Ui ⊇ Ui−1 and Vi ⊇ Vi−1. Player II wins if and only if
(
⋃
Ui ,

⋃
Vi ) ∈ P. A set of ordered separators is generic if Player II has a

winning strategy in the separator game with payoff set P.

I

II

U0 V0U1 V1U2 V2U3 V3

U0,V0

U1,V1

U2,V2

U3,V3

Example Application: A compact metric space has topological dimension
≤ n if and only if {(U,V ) : dim(X \ (U ∪ V )) ≤ n − 1} is generic.
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Generic Separators and Dictionaricness

Proposition

A type space Sn(T ) is dictionaric if and only if
{(U,V ) : X \ V is definable} is generic.

While arbitrary definable sets can be bad, generic definable sets in
dictionaric type spaces are very nice. A generic definable set D satisfies:

D ∩ E is definable (and generic in E ) for a fixed definable set E .

Sx(a) dictionaric ⇒ D(x , a) is definable (and generic in Sx(a)) for a
fixed parameter a.

Sx(T ) dictionaric ⇒ ‘∃yD(x , y)’ and ‘∀yD(x , y)’ are both definable
(and generic in Sx(T )).

D(x , y) ∩ D(y , x) is definable (but not generic).
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Categoricity
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Uncountably Categorical Theories

Definition

A theory is κ-categorical if it has a unique model of cardinality κ.

Theorem (Morley)

If a countable theory is categorical in some uncountable cardinality, then it
is categorical in every uncountable cardinality.

Theorem (Baldwin, Lachlan)

A theory is uncountably categorical iff it is ω-stable and has no Vaughtian
pairs.

These ingredients give you: A set with a good dimension theory (strongly
minimal, from ω-stable) that ‘controls’ everything (no Vaughtian pairs).
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Inseparably Categorical Theories

Theorem (Ben Yaacov; Shelah, Usvyatsov)

Morley’s theorem holds in continuous logic for ‘inseparably categorical’
theories.

Theorem (Ben Yaacov)

Inseparably categorical theories are ω-stable (count types with metric
density character).

Theorem (Noquez)

Inseparably categorical theories have no Vaughtian pairs.

Converse?
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Trouble with the Classical Picture

The theory of (the unit ball of)
an infinite dimensional Hilbert
space, IHS, is inseparably
categorical, but...

...does not have any strongly
minimal types (see picture).

IHS does not even interpret a
strongly minimal theory.

S1(H) for H |= IHS.
(Not drawn topologically.)
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Strongly Minimal Sets

Definition

A strongly minimal set is a definable set with no pair of disjoint
non-algebraic zerosets over any parameters.

Has a unique non-algebraic type over any parameters. Such types are also
called strongly minimal.
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Strongly Minimal Types

Definition

A type p is strongly minimal if it has a unique non-algebraic extension q
(over some model) and that q is in a strongly minimal set (over that
model).

Given a strongly minimal type p ∈ S1(A), can we find a strongly minimal
set D 3 p definable over A? Over a model, yes, but may use lots of
parameters. In general, no:

Let A be the structure that is a pure metric space whose universe is ω2

with d((i , j), (k , `)) = 1 when j 6= ` and d((i , j), (k , j)) = 2−j .

........ ........ ........ ........ . . .

The type space S1(∅) of Th(A), topologically homeomorphic to ω + 1.
Limit type is strongly minimal but not contained in a ∅-definable strongly
minimal set.
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Approximately Strongly Minimal Pairs

Morally speaking the previous example is strongly minimal but with
some weird behavior in ‘acl(∅)’ that goes away in the limit.

Looks ‘approximately strongly minimal.’

Can define the notion of an ‘approximately strongly minimal pair,’
which is a generalization of strongly minimal set that captures this
intuition.

Every approximately strongly minimal pair selects a unique strongly
minimal type.

The home sort in the previous example is approximately strongly
minimal.
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Finding Approximately Strongly Minimal Pairs

If p ∈ S1(A) is a strongly minimal type does there always exist an
approximately strongly minimal pair definable over A ‘pointing to’ p?

No: There is a superstable counterexample.

Proposition (H.)

ω-stable theories are dictionaric.

Theorem (H.)

If p ∈ Sn(A) is a strongly minimal type and Sn(A) is dictionaric, then there
is an A-definable strongly minimal pair (D, ϕ) pointing to p.

Proposition (H.)

If T is a dictionaric theory with no Vaughtian pairs, then minimal sets are
strongly minimal.
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Strongly Minimal Sets in the Prime Model

Does every inseparably categorical theory that has strongly minimal types
have one over the prime model?

Theorem (H.)

For every n ≤ ω there is an inseparably categorical theory Tn with a
∅-definable strongly minimal imaginary I such that dim(I ) can be
anything ≤ ω but S1(A) has a strongly minimal type iff dim(I (A)) ≥ n.

Strongly minimal imaginaries?

Theorem (H.)

If T is an inseparably categorical theory with a discrete strongly minimal
imaginary then it has a discrete strongly minimal imaginary over the prime
model.
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Baldwin-Lachlan Style Characterization?

If T is an inseparably categorical theory that has strongly minimal types
over the prime model do we get a characterization?

Yes, partially:

Theorem (H.)

A theory with a minimal set (resp. imaginary) over the prime model is
inseparably categorical iff it is dictionaric and has no (imaginary)
Vaughtian pairs.

Which, of course, raises the question:
When can we find strongly minimal types?
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Two Axes of Difficulty

Continuous logic introduces two new difficulties:

Lack of local compactness (of models).

Lack of total disconnectedness (of type spaces).

IHS has both of these issues, but can we tackle one of them at a time?

Proposition (H.)

If T has a locally compact model, then it is inseparably categorical iff it is
ω-stable and has no Vaughtian pairs.

Example: The theory of (R,+) with the metric min{|x − y |, 1}, which is
strongly minimal but does not interpret a discrete strongly minimal theory.
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Ultrametrics and Totally Disconnected Type Spaces

Proposition (H.)

A theory T has totally disconnected type spaces iff it is dictionaric and has
a ∅-definable ultrametric that is uniformly equivalent to the metric.
Such theories are bi-interpretable with many-sorted discrete theories.

Not all ultrametric theories are dictionaric.

Proposition (H.)

If a theory T has totally disconnected type spaces, then it is inseparably
categorical iff it is ω-stable and has no imaginary Vaughtian pairs.

Example: The theory of the p-adic Banach space L∞ with scalars in Zp

(i.e. Zω
p with the sup norm). This is also an example of an inseparably

categorical theory with a strongly minimal imaginary but no strongly
minimal sets.
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Can We Improve That? I

Can we bring the assumption down to ‘no Vaughtian pairs’ rather than ‘no
imaginary Vaughtian pairs’ for ultrametric theories?

No:

Theorem (H.)

There is an ω-stable ultrametric theory with no Vaughtian Pairs+ which
fails to be inseparably categorical.

James Hanson (UW Madison) Definability and Categoricity April 21, 2020 27 / 29



Can We Improve That? I

Can we bring the assumption down to ‘no Vaughtian pairs’ rather than ‘no
imaginary Vaughtian pairs’ for ultrametric theories? No:

Theorem (H.)

There is an ω-stable ultrametric theory with no Vaughtian Pairs+ which
fails to be inseparably categorical.

James Hanson (UW Madison) Definability and Categoricity April 21, 2020 27 / 29



Can We Imporve That? II

Idea: Take two discrete affine spaces (i.e. vector spaces with 0
‘forgotten’), V and W .

Let A = (V ×W )ω with an appropriate product
metric. Give A the structure of an infinite wreath product: Add relations
that give a bijection between any pair {σ} × V and {τ} × V for any
σ, τ ∈ (V ×W )<ω with even length if provided σ, τ , and an element of
both of the copies of V as parameters (and likewise for W with σ and τ of
odd length). Models of Th(A) are entirely determined by the dimensions
of V and W , which are independent (not inseparably categorical). Argue
that anything even resembling a non-algebraic definable set contains types
corresponding to both V and W , so every non-algebraic definable subset
of the home sort grows in any proper elementary extension.
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Thank you
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