A Versatile Counterexample for Invariant Types and Keisler Measures outside NIP

James Hanson
Joint work with Gabriel Conant and Kyle Gannon.
March 30, 2021
Notre Dame Model Theory Seminar

Types and Measures

Invariant Types

Definition

Given a set of parameters A, a global type $p(x)$ is A-invariant if for any formula $\varphi(x, y)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\varphi(x, b) \in p(x) \Leftrightarrow \varphi(x, c) \in p(x) .
$$

Invariant Types

Definition

Given a set of parameters A, a global type $p(x)$ is A-invariant if for any formula $\varphi(x, y)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\varphi(x, b) \in p(x) \Leftrightarrow \varphi(x, c) \in p(x) .
$$

An easy way to build an unrealized A-invariant type:

Invariant Types

Definition

Given a set of parameters A, a global type $p(x)$ is A-invariant if for any formula $\varphi(x, y)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\varphi(x, b) \in p(x) \Leftrightarrow \varphi(x, c) \in p(x) .
$$

An easy way to build an unrealized A-invariant type: Pick an ultrafilter \mathcal{U} on A

Invariant Types

Definition

Given a set of parameters A, a global type $p(x)$ is A-invariant if for any formula $\varphi(x, y)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\varphi(x, b) \in p(x) \Leftrightarrow \varphi(x, c) \in p(x) .
$$

An easy way to build an unrealized A-invariant type: Pick an ultrafilter \mathcal{U} on A and let

$$
p(x)=\{\varphi(x): \mathcal{U} \text {-most } a \in A \text { satisfy } \varphi\} .
$$

Invariant Types

Definition

Given a set of parameters A, a global type $p(x)$ is A-invariant if for any formula $\varphi(x, y)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\varphi(x, b) \in p(x) \Leftrightarrow \varphi(x, c) \in p(x) .
$$

An easy way to build an unrealized A-invariant type: Pick an ultrafilter \mathcal{U} on A and let

$$
p(x)=\{\varphi(x): \mathcal{U} \text {-most } a \in A \text { satisfy } \varphi\}
$$

Types of this form are called A-finitely satisfiable.

Invariant Types

Definition

Given a set of parameters A, a global type $p(x)$ is A-invariant if for any formula $\varphi(x, y)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\varphi(x, b) \in p(x) \Leftrightarrow \varphi(x, c) \in p(x) .
$$

An easy way to build an unrealized A-invariant type: Pick an ultrafilter \mathcal{U} on A and let

$$
p(x)=\{\varphi(x): \mathcal{U} \text {-most } a \in A \text { satisfy } \varphi\}
$$

Types of this form are called A-finitely satisfiable. Prototypical example (DLO):

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.
- 'Tameness' of $p(x)$ can be quantified in terms of topological complexity of F_{p}^{φ} :

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.
- 'Tameness' of $p(x)$ can be quantified in terms of topological complexity of F_{p}^{φ} :
- A type is definable if F_{p}^{φ} is a continuous function for every φ.

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.
- 'Tameness' of $p(x)$ can be quantified in terms of topological complexity of F_{p}^{φ} :
- A type is definable if F_{p}^{φ} is a continuous function for every φ.
- A type is Borel definable if F_{p}^{φ} is Borel measurable for every φ.

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.
- 'Tameness' of $p(x)$ can be quantified in terms of topological complexity of F_{p}^{φ} :
- A type is definable if F_{p}^{φ} is a continuous function for every φ.
- A type is Borel definable if F_{p}^{φ} is Borel measurable for every φ.
- A theory is stable if and only if every invariant type is definable and finitely satisfiable ($d f s$).

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.
- 'Tameness' of $p(x)$ can be quantified in terms of topological complexity of F_{p}^{φ} :
- A type is definable if F_{p}^{φ} is a continuous function for every φ.
- A type is Borel definable if F_{p}^{φ} is Borel measurable for every φ.
- A theory is stable if and only if every invariant type is definable and finitely satisfiable ($d f s$).
- In NIP theories, every invariant type is Borel definable. (Hrushovski, Pillay)

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.
- 'Tameness' of $p(x)$ can be quantified in terms of topological complexity of F_{p}^{φ} :
- A type is definable if F_{p}^{φ} is a continuous function for every φ.
- A type is Borel definable if F_{p}^{φ} is Borel measurable for every φ.
- A theory is stable if and only if every invariant type is definable and finitely satisfiable ($d f s$).
- In NIP theories, every invariant type is Borel definable. (Hrushovski, Pillay)
- Definable types play an important role in the theory of models of PA.

Definable Types

Definition (Fiber Functions)

For each formula $\varphi(x, y)$, let $F_{p}^{\varphi}: S_{y}(A) \rightarrow\{0,1\}$ be the function defined by $F_{p}^{\varphi}(q)=1$ if $\varphi(x, b) \in p(x)$ for any $b \models q$.

- $p(x)$ is clearly uniquely determined by the functions F_{p}^{φ}.
- 'Tameness' of $p(x)$ can be quantified in terms of topological complexity of F_{p}^{φ} :
- A type is definable if F_{p}^{φ} is a continuous function for every φ.
- A type is Borel definable if F_{p}^{φ} is Borel measurable for every φ.
- A theory is stable if and only if every invariant type is definable and finitely satisfiable ($d f s$).
- In NIP theories, every invariant type is Borel definable. (Hrushovski, Pillay)
- Definable types play an important role in the theory of models of PA. Prototypical definable type (DLO):

Morley Products

An A-invariant type $p(x)$ is a 'recipe' for building a type $\left.p\right|_{A}$ over any $B \supseteq A$ in a coherent way.

Morley Products

An A-invariant type $p(x)$ is a 'recipe' for building a type $\left.p\right|_{A}$ over any $B \supseteq A$ in a coherent way.

Definition

Given two A-invariant types $p(x)$ and $q(y)$, the Morley product, written $p \otimes q(x, y)$, is the global type satisfying

$$
\varphi(x, y, c) \in p \otimes q(x, y) \Leftrightarrow\left[\left.b \models q\right|_{A c} \rightarrow \varphi(x, b, c) \in p(x)\right] .
$$

Morley Products

An A-invariant type $p(x)$ is a 'recipe' for building a type $\left.p\right|_{A}$ over any $B \supseteq A$ in a coherent way.

Definition

Given two A-invariant types $p(x)$ and $q(y)$, the Morley product, written $p \otimes q(x, y)$, is the global type satisfying

$$
\varphi(x, y, c) \in p \otimes q(x, y) \Leftrightarrow\left[\left.b \models q\right|_{A c} \rightarrow \varphi(x, b, c) \in p(x)\right] .
$$

'Realize q and then realize p. .

Morley Products

An A-invariant type $p(x)$ is a 'recipe' for building a type $\left.p\right|_{A}$ over any $B \supseteq A$ in a coherent way.

Definition

Given two A-invariant types $p(x)$ and $q(y)$, the Morley product, written $p \otimes q(x, y)$, is the global type satisfying

$$
\varphi(x, y, c) \in p \otimes q(x, y) \Leftrightarrow\left[\left.b \models q\right|_{A c} \rightarrow \varphi(x, b, c) \in p(x)\right] .
$$

'Realize q and then realize p. .

- Associative.

Morley Products

An A-invariant type $p(x)$ is a 'recipe' for building a type $\left.p\right|_{A}$ over any $B \supseteq A$ in a coherent way.

Definition

Given two A-invariant types $p(x)$ and $q(y)$, the Morley product, written $p \otimes q(x, y)$, is the global type satisfying

$$
\varphi(x, y, c) \in p \otimes q(x, y) \Leftrightarrow\left[\left.b \models q\right|_{A c} \rightarrow \varphi(x, b, c) \in p(x)\right] .
$$

'Realize q and then realize p. .

- Associative.
- p, q finitely satisfiable $\Rightarrow p \otimes q$ finitely satisfiable.

Morley Products

An A-invariant type $p(x)$ is a 'recipe' for building a type $\left.p\right|_{A}$ over any $B \supseteq A$ in a coherent way.

Definition

Given two A-invariant types $p(x)$ and $q(y)$, the Morley product, written $p \otimes q(x, y)$, is the global type satisfying

$$
\varphi(x, y, c) \in p \otimes q(x, y) \Leftrightarrow\left[\left.b \models q\right|_{A c} \rightarrow \varphi(x, b, c) \in p(x)\right] .
$$

'Realize q and then realize p. .

- Associative.
- p, q finitely satisfiable $\Rightarrow p \otimes q$ finitely satisfiable.
- p, q definable $\Rightarrow p \otimes q$ definable.

Morley Products

An A-invariant type $p(x)$ is a 'recipe' for building a type $\left.p\right|_{A}$ over any $B \supseteq A$ in a coherent way.

Definition

Given two A-invariant types $p(x)$ and $q(y)$, the Morley product, written $p \otimes q(x, y)$, is the global type satisfying

$$
\varphi(x, y, c) \in p \otimes q(x, y) \Leftrightarrow\left[\left.b \models q\right|_{A c} \rightarrow \varphi(x, b, c) \in p(x)\right] .
$$

'Realize q and then realize p. .

- Associative.
- p, q finitely satisfiable $\Rightarrow p \otimes q$ finitely satisfiable.
- p, q definable $\Rightarrow p \otimes q$ definable.
- p definable and q finitely satisfiable $\Rightarrow p \otimes q=q \otimes p$.

Nice Types

Definition

Given an A-invariant type $p(x)$ and $B \supseteq A$, a Morley sequence in p over B (indexed by ω) is a realization of the type

Nice Types

Definition

Given an A-invariant type $p(x)$ and $B \supseteq A$, a Morley sequence in p over B (indexed by ω) is a realization of the type
$\frac{p \otimes p \otimes p}{\omega \text { times }}$
restricted to B.

Nice Types

Definition

Given an A-invariant type $p(x)$ and $B \supseteq A$, a Morley sequence in p over B (indexed by ω) is a realization of the type
$\frac{p \otimes p \otimes p}{\omega \text { times }}$
restricted to B.
Invariant type p is generically stable if no Morley sequence in p witnesses the order property.

Nice Types

Definition

Given an A-invariant type $p(x)$ and $B \supseteq A$, a Morley sequence in p over B (indexed by ω) is a realization of the type
$\frac{p \otimes p \otimes p}{\omega \text { times }}$
restricted to B.
Invariant type p is generically stable if no Morley sequence in p witnesses the order property.

- Generically stable types are dfs.

Nice Types

Definition

Given an A-invariant type $p(x)$ and $B \supseteq A$, a Morley sequence in p over B (indexed by ω) is a realization of the type
$\underbrace{p \otimes p \otimes p}_{\omega \text { times }}$
restricted to B.
Invariant type p is generically stable if no Morley sequence in p witnesses the order property.

- Generically stable types are dfs.
- There is one known examples of $d f s$ types that are not generically stable.

Nice Types

Definition

Given an A-invariant type $p(x)$ and $B \supseteq A$, a Morley sequence in p over B (indexed by ω) is a realization of the type
$p \otimes p \otimes p$
restricted to B.
Invariant type p is generically stable if no Morley sequence in p witnesses the order property.

- Generically stable types are dfs.
- There is one known examples of $d f s$ types that are not generically stable. Henson graph: 'I'm not connected to anything.'

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

- Introduced by Keisler to study forking in NIP theories.

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

■ Introduced by Keisler to study forking in NIP theories.

- Generalization of types: For a type $p(x), \delta_{p}(x)$ defined by setting $\delta_{p}(\varphi(x))=1$ if $\varphi(x) \in p(x)$ and 0 otherwise.

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

- Introduced by Keisler to study forking in NIP theories.
- Generalization of types: For a type $p(x), \delta_{p}(x)$ defined by setting $\delta_{p}(\varphi(x))=1$ if $\varphi(x) \in p(x)$ and 0 otherwise.
- Same thing as regular Borel measures on type space.

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

- Introduced by Keisler to study forking in NIP theories.
- Generalization of types: For a type $p(x), \delta_{p}(x)$ defined by setting $\delta_{p}(\varphi(x))=1$ if $\varphi(x) \in p(x)$ and 0 otherwise.
- Same thing as regular Borel measures on type space.
- Natural example: The ultraproduct of the normalized counting measures in a pseudo-finite structure.

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

- Introduced by Keisler to study forking in NIP theories.
- Generalization of types: For a type $p(x), \delta_{p}(x)$ defined by setting $\delta_{p}(\varphi(x))=1$ if $\varphi(x) \in p(x)$ and 0 otherwise.
- Same thing as regular Borel measures on type space.
- Natural example: The ultraproduct of the normalized counting measures in a pseudo-finite structure.
- Measures over the parameters A correspond to types in the randomization of T_{A}.

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

- Introduced by Keisler to study forking in NIP theories.
- Generalization of types: For a type $p(x), \delta_{p}(x)$ defined by setting $\delta_{p}(\varphi(x))=1$ if $\varphi(x) \in p(x)$ and 0 otherwise.
- Same thing as regular Borel measures on type space.
- Natural example: The ultraproduct of the normalized counting measures in a pseudo-finite structure.
- Measures over the parameters A correspond to types in the randomization of T_{A}.
- Played an essential role in resolving the Pillay conjectures.

Keisler Measures

Definition

A Keisler measure $\mu(x)$ on the variables x is a finitely additive probability measure on the Boolean algebra of formulas in x (possibly over parameters).

- Introduced by Keisler to study forking in NIP theories.
- Generalization of types: For a type $p(x), \delta_{p}(x)$ defined by setting $\delta_{p}(\varphi(x))=1$ if $\varphi(x) \in p(x)$ and 0 otherwise.
- Same thing as regular Borel measures on type space.
- Natural example: The ultraproduct of the normalized counting measures in a pseudo-finite structure.
- Measures over the parameters A correspond to types in the randomization of T_{A}.
- Played an essential role in resolving the Pillay conjectures.
- An o-minimal theory has no non-trivial $d f s$ types but does have non-trivial dfs measures.

Invariant Measures

Definition

A global measure $\mu(x)$ is A-invariant if for any $\varphi(x, b)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\mu(\varphi(x, b))=\mu(\varphi(x, c))
$$

Invariant Measures

Definition

A global measure $\mu(x)$ is A-invariant if for any $\varphi(x, b)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\mu(\varphi(x, b))=\mu(\varphi(x, c))
$$

Fiber Functions: Given an A-invariant measure μ, let $F_{\mu}^{\varphi}: S_{y}(A) \rightarrow[0,1]$ be the function that satisfies $F_{\mu}^{\varphi}(q)=\mu(\varphi(x, b))$ for any $b \vDash q$.

Invariant Measures

Definition

A global measure $\mu(x)$ is A-invariant if for any $\varphi(x, b)$ and any two tuples b, c with $b \equiv_{A} c$,

$$
\mu(\varphi(x, b))=\mu(\varphi(x, c))
$$

Fiber Functions: Given an A-invariant measure μ, let $F_{\mu}^{\varphi}: S_{y}(A) \rightarrow[0,1]$ be the function that satisfies $F_{\mu}^{\varphi}(q)=\mu(\varphi(x, b))$ for any $b \vDash q$.

Definition

Given two A-invariant measures $\mu(x)$ and $\nu(y)$, the Morley product of μ and ν, written $\mu \otimes \nu(x, y)$ is the unique A-invariant measure satisfying

$$
\mu \otimes \nu(\varphi(x, y, c))=\int_{S_{y}(A c)} F_{\mu}^{\varphi(x, y, c)} d \nu(y)
$$

Invariant Measures

Definition

A global measure $\mu(x)$ is A-invariant if for any $\varphi(x, b)$ and any two tuples b, c with $b \equiv{ }_{A} c$,

$$
\mu(\varphi(x, b))=\mu(\varphi(x, c))
$$

Fiber Functions: Given an A-invariant measure μ, let $F_{\mu}^{\varphi}: S_{y}(A) \rightarrow[0,1]$ be the function that satisfies $F_{\mu}^{\varphi}(q)=\mu(\varphi(x, b))$ for any $b \vDash q$.

Definition

Given two A-invariant measures $\mu(x)$ and $\nu(y)$, the Morley product of μ and ν, written $\mu \otimes \nu(x, y)$ is the unique A-invariant measure satisfying

$$
\mu \otimes \nu(\varphi(x, y, c))=\int_{S_{y}(A c)} F_{\mu}^{\varphi(x, y, c)} d \nu(y)
$$

assuming such a measure exists.

Nice Measures I

- $\mu(x)$ is A-definable if each F_{μ}^{φ} is continuous (i.e. is definable in the sense of continuous logic).

Nice Measures I

- $\mu(x)$ is A-definable if each F_{μ}^{φ} is continuous (i.e. is definable in the sense of continuous logic).
$\square \mu(x)$ is A-Borel definable if each F_{μ}^{φ} is Borel measurable.

Nice Measures I

- $\mu(x)$ is A-definable if each F_{μ}^{φ} is continuous (i.e. is definable in the sense of continuous logic).
$\square \mu(x)$ is A-Borel definable if each F_{μ}^{φ} is Borel measurable.
- $\mu(x)$ is A-finitely satisfiable if for any formula $\varphi(x)$ with $\mu(\varphi(x))>0$, there is $a \in A$ such that $\varphi(a)$ holds.

Nice Measures I

- $\mu(x)$ is A-definable if each F_{μ}^{φ} is continuous (i.e. is definable in the sense of continuous logic).
- $\mu(x)$ is A-Borel definable if each F_{μ}^{φ} is Borel measurable.
- $\mu(x)$ is A-finitely satisfiable if for any formula $\varphi(x)$ with $\mu(\varphi(x))>0$, there is $a \in A$ such that $\varphi(a)$ holds.
- There is a slightly technical generalization of generic stability to measures called fim (frequency interpretation measure). fim measures are always $d f$ s.

Nice Measures I

- $\mu(x)$ is A-definable if each F_{μ}^{φ} is continuous (i.e. is definable in the sense of continuous logic).
$\square \mu(x)$ is A-Borel definable if each F_{μ}^{φ} is Borel measurable.
- $\mu(x)$ is A-finitely satisfiable if for any formula $\varphi(x)$ with $\mu(\varphi(x))>0$, there is $a \in A$ such that $\varphi(a)$ holds.
- There is a slightly technical generalization of generic stability to measures called fim (frequency interpretation measure). fim measures are always $d f$.
- Example in any o-minimal theory:

Nice Measures I

- $\mu(x)$ is A-definable if each F_{μ}^{φ} is continuous (i.e. is definable in the sense of continuous logic).
$\square \mu(x)$ is A-Borel definable if each F_{μ}^{φ} is Borel measurable.
- $\mu(x)$ is A-finitely satisfiable if for any formula $\varphi(x)$ with $\mu(\varphi(x))>0$, there is $a \in A$ such that $\varphi(a)$ holds.
- There is a slightly technical generalization of generic stability to measures called fim (frequency interpretation measure). fim measures are always $d f$.
- Example in any o-minimal theory:

- There is also an intermediate property (which is non-trivial for types)...

Nice Measures II

Definition

A measure $\mu(x)$ is fam (finitely approximated measure) if there is some small model M such that for any formula $\varphi(x, y)$ and any $\varepsilon>0$, there are $\bar{a} \in\left(M^{x}\right)^{n}$ such that

$$
\left|\mu(\varphi(x, b))-\frac{1}{n} \sum_{i<n} \varphi\left(a_{i}, b\right)\right|<\varepsilon
$$

for all b in the monster.

Nice Measures II

Definition

A measure $\mu(x)$ is fam (finitely approximated measure) if there is some small model M such that for any formula $\varphi(x, y)$ and any $\varepsilon>0$, there are $\bar{a} \in\left(M^{x}\right)^{n}$ such that

$$
\left|\mu(\varphi(x, b))-\frac{1}{n} \sum_{i<n} \varphi\left(a_{i}, b\right)\right|<\varepsilon
$$

for all b in the monster.
We say that p is fam if δ_{p} is fam.

Nice Measures II

Definition

A measure $\mu(x)$ is fam (finitely approximated measure) if there is some small model M such that for any formula $\varphi(x, y)$ and any $\varepsilon>0$, there are $\bar{a} \in\left(M^{x}\right)^{n}$ such that

$$
\left|\mu(\varphi(x, b))-\frac{1}{n} \sum_{i<n} \varphi\left(a_{i}, b\right)\right|<\varepsilon
$$

for all b in the monster.
We say that p is fam if δ_{p} is fam. In general,

$$
d f s \Leftarrow f a m \Leftarrow \text { fim } .
$$

Nice Measures II

Definition

A measure $\mu(x)$ is fam (finitely approximated measure) if there is some small model M such that for any formula $\varphi(x, y)$ and any $\varepsilon>0$, there are $\bar{a} \in\left(M^{x}\right)^{n}$ such that

$$
\left|\mu(\varphi(x, b))-\frac{1}{n} \sum_{i<n} \varphi\left(a_{i}, b\right)\right|<\varepsilon
$$

for all b in the monster.
We say that p is fam if δ_{p} is fam. In general,

$$
d f s \Leftarrow f a m \Leftarrow \text { fim } .
$$

In NIP theories, dfs measures are always fim. (Hrushovski, Pillay, Simon)

Nice Measures II

Definition

A measure $\mu(x)$ is fam (finitely approximated measure) if there is some small model M such that for any formula $\varphi(x, y)$ and any $\varepsilon>0$, there are $\bar{a} \in\left(M^{x}\right)^{n}$ such that

$$
\left|\mu(\varphi(x, b))-\frac{1}{n} \sum_{i<n} \varphi\left(a_{i}, b\right)\right|<\varepsilon
$$

for all b in the monster.
We say that p is fam if δ_{p} is fam. In general,

$$
d f s \Leftarrow f a m \Leftarrow \text { fim } .
$$

In NIP theories, $d f s$ measures are always fim. (Hrushovski, Pillay, Simon) The type in the Henson graph is fam but not fim/generically stable (uses Erdös-Rogers).

Questions and Some Answers

- We know that fam measures are not always fim, but are dfs measures always fam? dfs types?

Questions and Some Answers

- We know that fam measures are not always fim, but are dfs measures always fam? dfs types?
- Does the Morley product of definable and finitely satisfiable measures commute?

Questions and Some Answers

- We know that fam measures are not always fim, but are dfs measures always fam? dfs types?
- Does the Morley product of definable and finitely satisfiable measures commute?
- In general, is the Morley product of measures associative? (Assumed implicitly in literature.)

Questions and Some Answers

- We know that fam measures are not always fim, but are dfs measures always fam? dfs types?
- Does the Morley product of definable and finitely satisfiable measures commute?
■ In general, is the Morley product of measures associative? (Assumed implicitly in literature.)
- Is the Morley product of Borel definable measures always Borel definable?

Questions and Some Answers

- We know that fam measures are not always fim, but are dfs measures always fam? dfs types?
- Does the Morley product of definable and finitely satisfiable measures commute?
- In general, is the Morley product of measures associative? (Assumed implicitly in literature.)
- Is the Morley product of Borel definable measures always Borel definable?

Theorems (Conant, Gannon, H.)

Over uncountable models of non-NIP theories, the Morley product of Borel definable measures may fail to be Borel definable and the Morley product of measures may fail to be associative (even when all products are Borel definable).

Half-Full of Half-Opens

$d f s, \neg f a m$ is Hard

$d f s, \neg f a m$ is Hard

In NIP, dfs types and measures are fim.

$d f s, \neg f a m$ is Hard

In NIP, dfs types and measures are fim.

Theorem (Conant, Gannon)

Any theory defining a random graph edge relation on its home sort has no non-trivial $d f s$ types or measures.

$d f s, \neg f a m$ is Hard

In NIP, dfs types and measures are fim.

Theorem (Conant, Gannon)

Any theory defining a random graph edge relation on its home sort has no non-trivial $d f s$ types or measures.

Rules out theories that are too tame (NIP) and theories that are too rich (PA, ZFC).

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals $[a, b)$.

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.
- Consider $2^{[0,1)}$ with the compact product topology.

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.
- Consider $2^{[0,1)}$ with the compact product topology. $[0,1)$ is in the closure of $\mathcal{H}_{1 / 2}$ but has measure 1 .

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.
- Consider $2^{[0,1)}$ with the compact product topology. $[0,1)$ is in the closure of $\mathcal{H}_{1 / 2}$ but has measure 1 .

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.
- Consider $2^{[0,1)}$ with the compact product topology. $[0,1)$ is in the closure of $\mathcal{H}_{1 / 2}$ but has measure 1 .

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.
- Consider $2^{[0,1)}$ with the compact product topology. $[0,1)$ is in the closure of $\mathcal{H}_{1 / 2}$ but has measure 1 .

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.
- Consider $2^{[0,1)}$ with the compact product topology. $[0,1)$ is in the closure of $\mathcal{H}_{1 / 2}$ but has measure 1 .

$M_{1 / 2}=\left([0,1), \mathcal{H}_{1 / 2}, \in\right)$ gives a local example of a dfs type that is not fam: The \in-type $q(y)$ saying that every element of the $[0,1)$-sort is in y is $d f s$.

First Attempt

A dfs but not fam type or measure must have something to do with a failure of the dominated convergence theorem for nets.

- Let \mathcal{H} be the Boolean algebra of subsets of $[0,1)$ generated by intervals [a, b).
- Let $\mathcal{H}_{1 / 2}$ be the collection of elements of \mathcal{H} with Lebesgue measure $\frac{1}{2}$.
- Consider $2^{[0,1)}$ with the compact product topology. $[0,1)$ is in the closure of $\mathcal{H}_{1 / 2}$ but has measure 1 .

$M_{1 / 2}=\left([0,1), \mathcal{H}_{1 / 2}, \in\right)$ gives a local example of a dfs type that is not fam: The \in-type $q(y)$ saying that every element of the $[0,1)$-sort is in y is $d f s$.
- $M_{1 / 2}$ interprets a Boolean algebra (\mathcal{H}).

Second Attempt

Embrace the Boolean algebra.

Second Attempt

Embrace the Boolean algebra. Expand the structure $M=([0,1), \mathcal{H}, \in)$ to have measure information:

Second Attempt

Embrace the Boolean algebra. Expand the structure $M=([0,1), \mathcal{H}, \in)$ to have measure information:

- Add a sort for $(\mathbb{R},+, 0,1,<)$ and a measure function ℓ from \mathcal{H} to \mathbb{R}. (Could also pass to continuous logic.)

Second Attempt

Embrace the Boolean algebra. Expand the structure $M=([0,1), \mathcal{H}, \in)$ to have measure information:

- Add a sort for $(\mathbb{R},+, 0,1,<)$ and a measure function ℓ from \mathcal{H} to \mathbb{R}. (Could also pass to continuous logic.)
- The (partial) type $q(y)$ in the \mathcal{H}-sort of a new element that says " y contains every element of $[0,1)^{\mathcal{U}}, y$ is independent of every $b \in \mathcal{H}^{\mathcal{U}}$, and $\ell(y)=\frac{1}{2}$ " should be similar to the previous example.

Second Attempt

Embrace the Boolean algebra. Expand the structure $M=([0,1), \mathcal{H}, \in)$ to have measure information:

- Add a sort for $(\mathbb{R},+, 0,1,<)$ and a measure function ℓ from \mathcal{H} to \mathbb{R}. (Could also pass to continuous logic.)
- The (partial) type $q(y)$ in the \mathcal{H}-sort of a new element that says " y contains every element of $[0,1)^{\mathcal{U}}, y$ is independent of every $b \in \mathcal{H}^{\mathcal{U}}$, and $\ell(y)=\frac{1}{2}$ " should be similar to the previous example.
- Is it consistent? Is it complete?

Second Attempt

Embrace the Boolean algebra. Expand the structure $M=([0,1), \mathcal{H}, \in)$ to have measure information:

- Add a sort for $(\mathbb{R},+, 0,1,<)$ and a measure function ℓ from \mathcal{H} to \mathbb{R}. (Could also pass to continuous logic.)
- The (partial) type $q(y)$ in the \mathcal{H}-sort of a new element that says " y contains every element of $[0,1)^{\mathcal{U}}, y$ is independent of every $b \in \mathcal{H}^{\mathcal{U}}$, and $\ell(y)=\frac{1}{2}$ " should be similar to the previous example.
- Is it consistent? Is it complete?

Proposition (Conant, Gannon, H.)

Any expansion of a Boolean algebra has no non-trivial dfs types.

Third Time's a Charm

Back off from the Boolean algebra a little bit.

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

$$
A \sim B
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

$$
A \sim B
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

$$
A \sim B
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:
$\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)$

$$
A \sim B
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:
$\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)$

$$
A \sim B
$$

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Three-sorted structure structure:

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Three-sorted structure structure:

The point of all this structure is to get QE ,

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

Three-sorted structure structure:

The point of all this structure is to get QE , but this structure doesn't actually have QE.

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

Three-sorted structure structure:

The point of all this structure is to get QE , but this structure doesn't actually have QE.

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

$$
A \sim B
$$

Three-sorted structure structure:

The point of all this structure is to get QE , but this structure doesn't actually have QE.

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

$$
A \sim B
$$

Three-sorted structure structure:

The point of all this structure is to get QE , but this structure doesn't actually have QE.

Third Time's a Charm

Back off from the Boolean algebra a little bit. Pass to $[0,1)^{\omega}$, and consider sets that are only non-trivial along one coordinate:

$$
\mathcal{Q} \subset \mathcal{P}\left([0,1)^{\omega}\right)
$$

$$
A \sim B
$$

Three-sorted structure structure:

The point of all this structure is to get QE , but this structure doesn't actually have QE.

Third Fourth Time's a Charm

Find a dense set $\mathcal{P} \subset[0,1)^{\omega}$ with the property that for any distinct $\alpha, \beta \in \mathcal{P}$ and any $k<\omega, \alpha(k) \neq \beta(k)$.

Third Fourth Time's a Charm

Find a dense set $\mathcal{P} \subset[0,1)^{\omega}$ with the property that for any distinct $\alpha, \beta \in \mathcal{P}$ and any $k<\omega, \alpha(k) \neq \beta(k)$.

Third Fourth Time's a Charm

Find a dense set $\mathcal{P} \subset[0,1)^{\omega}$ with the property that for any distinct $\alpha, \beta \in \mathcal{P}$ and any $k<\omega, \alpha(k) \neq \beta(k)$.

Third Fourth Time's a Charm

Find a dense set $\mathcal{P} \subset[0,1)^{\omega}$ with the property that for any distinct $\alpha, \beta \in \mathcal{P}$ and any $k<\omega, \alpha(k) \neq \beta(k)$.

Third Fourth Time's a Charm

Find a dense set $\mathcal{P} \subset[0,1)^{\omega}$ with the property that for any distinct $\alpha, \beta \in \mathcal{P}$ and any $k<\omega, \alpha(k) \neq \beta(k)$.

Theorem (Conant, Gannon, H.)
$T_{1 / 2}^{\infty}:=\operatorname{Th}\left(M_{1 / 2}^{\infty}\right)$ has quantifier elimination.

QE Proof (Sketch)

Lemma

The restriction of $T_{1 / 2}^{\infty}$ to the sorts P and Q is ω-categorical and has QE.

QE Proof (Sketch)

Lemma

The restriction of $T_{1 / 2}^{\infty}$ to the sorts P and Q is ω-categorical and has $Q E$.

Proof of Lemma.

$T_{1 / 2}^{\infty} \mid P Q$ is a Fraïssé limit of 'disjoint unions of Boolean algebras with elements.'

QE Proof (Sketch)

Lemma

The restriction of $T_{1 / 2}^{\infty}$ to the sorts P and Q is ω-categorical and has QE.

Proof of Lemma.

$T_{1 / 2}^{\infty} \mid P Q$ is a Fraïssé limit of 'disjoint unions of Boolean algebras with elements.'

Fact

$\operatorname{Th}(\mathbb{R}, 0,1,+,<)$ has QE .

QE Proof (Sketch)

Lemma

The restriction of $T_{1 / 2}^{\infty}$ to the sorts P and Q is ω-categorical and has QE.

Proof of Lemma.

$T_{1 / 2}^{\infty} \mid P Q$ is a Fraïssé limit of 'disjoint unions of Boolean algebras with elements.'

Fact

$\operatorname{Th}(\mathbb{R}, 0,1,+,<)$ has QE.

Proof of Theorem.

P quantifiers can be eliminated by the lemma.

QE Proof (Sketch)

Lemma

The restriction of $T_{1 / 2}^{\infty}$ to the sorts P and Q is ω-categorical and has QE.

Proof of Lemma.

$T_{1 / 2}^{\infty} \mid P Q$ is a Fraïssé limit of 'disjoint unions of Boolean algebras with elements.'

Fact

$\operatorname{Th}(\mathbb{R}, 0,1,+,<)$ has QE.

Proof of Theorem.

P quantifiers can be eliminated by the lemma. R quantifiers can be eliminated by the fact.

QE Proof (Sketch)

Lemma

The restriction of $T_{1 / 2}^{\infty}$ to the sorts P and Q is ω-categorical and has QE.

Proof of Lemma.

$T_{1 / 2}^{\infty} \mid P Q$ is a Fraïssé limit of 'disjoint unions of Boolean algebras with elements.'

Fact

$\operatorname{Th}(\mathbb{R}, 0,1,+,<)$ has QE.

Proof of Theorem.

P quantifiers can be eliminated by the lemma. R quantifiers can be eliminated by the fact. Q quantifiers can be reduced to R quantifiers by the lemma and the fact.

Definition

Let $q_{1 / 2}(y)$ be the type in the Q sort axiomatized by

$$
\begin{aligned}
& a \in y \text { for all } a \in P(\mathcal{U}) \\
& y \nsim b \text { for all } b \in Q(\mathcal{U})
\end{aligned}
$$

Definition

Let $q_{1 / 2}(y)$ be the type in the Q sort axiomatized by

$$
\begin{array}{ll}
a \in y \text { for all } a \in P(\mathcal{U}), & \ell(y)=\frac{1}{2} . \\
y \nsim b \text { for all } b \in Q(\mathcal{U})
\end{array}
$$

Complete, definable type by QE.

Definition

Let $q_{1 / 2}(y)$ be the type in the Q sort axiomatized by

$$
\begin{aligned}
& a \in y \text { for all } a \in P(\mathcal{U}), \\
& y \nsim b \text { for all } b \in Q(\mathcal{U}),
\end{aligned}
$$

- Complete, definable type by QE.
- Finitely satisfiable in $M_{1 / 2}^{\infty}$ (therefore consistent).

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.
Let $\left\{b_{i}\right\}_{i<n}$ be any sequence of elements of \mathcal{Q}.

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.
Let $\left\{b_{i}\right\}_{i<n}$ be any sequence of elements of \mathcal{Q}.
Show that it fails to approximate $\varphi(x, y):=x \in y \wedge \ell(y)=\frac{1}{2}$.

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.
Let $\left\{b_{i}\right\}_{i<n}$ be any sequence of elements of \mathcal{Q}.
Show that it fails to approximate $\varphi(x, y):=x \in y \wedge \ell(y)=\frac{1}{2}$.
May assume that for each $i<n, \ell\left(b_{i}\right)=\frac{1}{2}$.

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.
Let $\left\{b_{i}\right\}_{i<n}$ be any sequence of elements of \mathcal{Q}.

- Show that it fails to approximate $\varphi(x, y):=x \in y \wedge \ell(y)=\frac{1}{2}$.
- May assume that for each $i<n, \ell\left(b_{i}\right)=\frac{1}{2}$.

Let $f(x)=\frac{1}{n} \sum_{i<n} \mathbf{1}_{b_{i}}(x)$ (function on $[0,1)^{\omega}$).

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.
Let $\left\{b_{i}\right\}_{i<n}$ be any sequence of elements of \mathcal{Q}.
Show that it fails to approximate $\varphi(x, y):=x \in y \wedge \ell(y)=\frac{1}{2}$.
May assume that for each $i<n, \ell\left(b_{i}\right)=\frac{1}{2}$.
Let $f(x)=\frac{1}{n} \sum_{i<n} \mathbf{1}_{b_{i}}(x)$ (function on $[0,1)^{\omega}$).
Let λ^{ω} be the product Lebesgue measure on $[0,1)^{\omega}$.

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.
Let $\left\{b_{i}\right\}_{i<n}$ be any sequence of elements of \mathcal{Q}.
Show that it fails to approximate $\varphi(x, y):=x \in y \wedge \ell(y)=\frac{1}{2}$.
May assume that for each $i<n, \ell\left(b_{i}\right)=\frac{1}{2}$.
Let $f(x)=\frac{1}{n} \sum_{i<n} \mathbf{1}_{b_{i}}(x)$ (function on $[0,1)^{\omega}$).
Let λ^{ω} be the product Lebesgue measure on $[0,1)^{\omega}$.
$\int f d \lambda^{\omega}=\frac{1}{2}$, so there is open subset U of $[0,1)^{\omega}$ in which f is uniformly $\leq \frac{1}{2}$. Pick $a \in U \cap \mathcal{P}$.

$\neg f a m$

Proposition (Conant, Gannon, H.)

$q_{1 / 2}(y)$ is not fam.

Proof.

Since $q_{1 / 2}$ is \varnothing-invariant, sufficient to check over $M_{1 / 2}^{\infty}$.
Let $\left\{b_{i}\right\}_{i<n}$ be any sequence of elements of \mathcal{Q}.
Show that it fails to approximate $\varphi(x, y):=x \in y \wedge \ell(y)=\frac{1}{2}$.
May assume that for each $i<n, \ell\left(b_{i}\right)=\frac{1}{2}$.
Let $f(x)=\frac{1}{n} \sum_{i<n} \mathbf{1}_{b_{i}}(x)$ (function on $[0,1)^{\omega}$).
Let λ^{ω} be the product Lebesgue measure on $[0,1)^{\omega}$.
$\int f d \lambda^{\omega}=\frac{1}{2}$, so there is open subset U of $[0,1)^{\omega}$ in which f is uniformly $\leq \frac{1}{2}$. Pick $a \in U \cap \mathcal{P}$.
$\left\{b_{i}\right\}_{i<n}$ fails to approximate the behavior of $\varphi(a, y)$.

But Wait, There's More

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$. Clearly not generically stable:

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.
Clearly not generically stable: A Morley sequence in $q_{P Q}$ is an infinite pairwise \sim-inequivalent sequence of elements of $Q \backslash\{\perp, \top\}$. Any such sequence witnesses the independence property with $x \in y$.

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.
Clearly not generically stable: A Morley sequence in $q_{P Q}$ is an infinite pairwise \sim-inequivalent sequence of elements of $Q \backslash\{\perp, \top\}$. Any such sequence witnesses the independence property with $x \in y$.

Proposition (Conant, Gannon, H.)

$q_{P Q}$ is fam.

New Example of fam, ᄀGenerically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.
Clearly not generically stable: A Morley sequence in $q_{P Q}$ is an infinite pairwise \sim-inequivalent sequence of elements of $Q \backslash\{\perp, \top\}$. Any such sequence witnesses the independence property with $x \in y$.

Proposition (Conant, Gannon, H.)

$q_{P Q}$ is fam.

Proof by example picture.

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.
Clearly not generically stable: A Morley sequence in $q_{P Q}$ is an infinite pairwise \sim-inequivalent sequence of elements of $Q \backslash\{\perp, \top\}$. Any such sequence witnesses the independence property with $x \in y$.

Proposition (Conant, Gannon, H.)

$q_{P Q}$ is fam.

Proof by example picture.

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.
Clearly not generically stable: A Morley sequence in $q_{P Q}$ is an infinite pairwise \sim-inequivalent sequence of elements of $Q \backslash\{\perp, \top\}$. Any such sequence witnesses the independence property with $x \in y$.

Proposition (Conant, Gannon, H.)

$q_{P Q}$ is fam.
Proof by example picture.

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.
Clearly not generically stable: A Morley sequence in $q_{P Q}$ is an infinite pairwise \sim-inequivalent sequence of elements of $Q \backslash\{\perp, \top\}$. Any such sequence witnesses the independence property with $x \in y$.

Proposition (Conant, Gannon, H.)

$q_{P Q}$ is fam.
Proof by example picture.

New Example of fam, \neg Generically Stable

Let $q_{P Q}=\left.q_{1 / 2}\right|_{P Q}($ reduct to sorts P and $Q)$.
Clearly not generically stable: A Morley sequence in $q_{P Q}$ is an infinite pairwise \sim-inequivalent sequence of elements of $Q \backslash\{\perp, \top\}$. Any such sequence witnesses the independence property with $x \in y$.

Proposition (Conant, Gannon, H.)

$q_{P Q}$ is $f a m$.
Proof by example picture.

Commutativity: The Uniform Measure on P

By QE, every definable subset of P differs by at most finitely many elements from a Boolean combination of sets of the form $x \in b$ for some $b \in Q$.

Commutativity: The Uniform Measure on P

By QE, every definable subset of P differs by at most finitely many elements from a Boolean combination of sets of the form $x \in b$ for some $b \in Q$. $\ln M_{1 / 2}^{\infty}$, there is a natural measure on Boolean combinations of sets of the form $x \in b$, specifically the Lebesgue measure (thinking of these as subsets of $\left.[0,1)^{\omega}\right)$.

Commutativity: The Uniform Measure on P

By QE, every definable subset of P differs by at most finitely many elements from a Boolean combination of sets of the form $x \in b$ for some $b \in Q$. In $M_{1 / 2}^{\infty}$, there is a natural measure on Boolean combinations of sets of the form $x \in b$, specifically the Lebesgue measure (thinking of these as subsets of $\left.[0,1)^{\omega}\right)$.

Lemma

There is a unique definable measure $\mu(x)$ extending this measure.

Commutativity: The Uniform Measure on P

By QE, every definable subset of P differs by at most finitely many elements from a Boolean combination of sets of the form $x \in b$ for some $b \in Q$. In $M_{1 / 2}^{\infty}$, there is a natural measure on Boolean combinations of sets of the form $x \in b$, specifically the Lebesgue measure (thinking of these as subsets of $\left.[0,1)^{\omega}\right)$.

Lemma

There is a unique definable measure $\mu(x)$ extending this measure.
Think of μ as randomly picking an element of P with each 'coordinate' distributed independently according to ℓ.

Commutativity: The Uniform Measure on P

By QE, every definable subset of P differs by at most finitely many elements from a Boolean combination of sets of the form $x \in b$ for some $b \in Q$. $\ln M_{1 / 2}^{\infty}$, there is a natural measure on Boolean combinations of sets of the form $x \in b$, specifically the Lebesgue measure (thinking of these as subsets of $\left.[0,1)^{\omega}\right)$.

Lemma

There is a unique definable measure $\mu(x)$ extending this measure.
Think of μ as randomly picking an element of P with each 'coordinate' distributed independently according to ℓ.
For example, if b, c, d are pairwise \sim-inequivalent, then

$$
\mu(x \in b \wedge x \in c \wedge x \in d)=\operatorname{st}(\ell(b) \ell(c) \ell(d))
$$

where st is the standard part map.

Failure of Commutativity

Proposition (Conant, Gannon, H.)

$$
\mu \otimes q_{1 / 2}(x, y) \neq q_{1 / 2} \otimes \mu(x, y) .
$$

Failure of Commutativity

Proposition (Conant, Gannon, H.)
$\mu \otimes q_{1 / 2}(x, y) \neq q_{1 / 2} \otimes \mu(x, y)$.

Proof.

Consider the formula $x \in y$.

Failure of Commutativity

Proposition (Conant, Gannon, H.)
$\mu \otimes q_{1 / 2}(x, y) \neq q_{1 / 2} \otimes \mu(x, y)$.

Proof.

Consider the formula $x \in y$. $q_{1 / 2} \otimes \mu(x \in y)$ is 1 ,

Failure of Commutativity

Proposition (Conant, Gannon, H.)
$\mu \otimes q_{1 / 2}(x, y) \neq q_{1 / 2} \otimes \mu(x, y)$.

Proof.

Consider the formula $x \in y$. $q_{1 / 2} \otimes \mu(x \in y)$ is 1 , but $\mu \otimes q_{1 / 2}(x \in y)$ is $\frac{1}{2}$.

Failure of Commutativity

Proposition (Conant, Gannon, H.)

$\mu \otimes q_{1 / 2}(x, y) \neq q_{1 / 2} \otimes \mu(x, y)$.

Proof.

Consider the formula $x \in y$. $q_{1 / 2} \otimes \mu(x \in y)$ is 1 , but $\mu \otimes q_{1 / 2}(x \in y)$ is $\frac{1}{2}$.

In particular, there are a dfs type and a definable measure that do not commute.

Some Remaining Questions

- Is there a dfs, not fam type in a simple theory?

Some Remaining Questions

- Is there a dfs, not fam type in a simple theory? An NSOP theory? An NTP 2 theory?

Some Remaining Questions

- Is there a dfs, not fam type in a simple theory? An NSOP theory? An NTP 2 theory?
- Do any two dfs measures commute?

Thank you

