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Invariant Types

Definition

Given a set of parameters A, a global type p(x) is A-invariant if for any
formula ϕ(x , y) and any two tuples b, c with b ≡A c ,

ϕ(x , b) ∈ p(x)⇔ ϕ(x , c) ∈ p(x).

An easy way to build an unrealized A-invariant type: Pick an ultrafilter U
on A and let

p(x) = {ϕ(x) : U-most a ∈ A satisfy ϕ}.

Types of this form are called A–finitely satisfiable.
Prototypical example (DLO):

Q p
Monster
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Definable Types

Definition (Fiber Functions)

For each formula ϕ(x , y), let Fϕp : Sy (A)→ {0, 1} be the function defined
by Fϕp (q) = 1 if ϕ(x , b) ∈ p(x) for any b |= q.

p(x) is clearly uniquely determined by the functions Fϕp .
‘Tameness’ of p(x) can be quantified in terms of topological
complexity of Fϕp :

A type is definable if Fϕ
p is a continuous function for every ϕ.

A type is Borel definable if Fϕ
p is Borel measurable for every ϕ.

A theory is stable if and only if every invariant type is definable and
finitely satisfiable (dfs).

In NIP theories, every invariant type is Borel definable. (Hrushovski,
Pillay)

Definable types play an important role in the theory of models of PA.

Prototypical definable type (DLO):
q

Monster
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Morley Products

An A-invariant type p(x) is a ‘recipe’ for building a type p|A over any
B ⊇ A in a coherent way.

Definition

Given two A-invariant types p(x) and q(y), the Morley product, written
p ⊗ q(x , y), is the global type satisfying

ϕ(x , y , c) ∈ p ⊗ q(x , y)⇔ [b |= q|Ac → ϕ(x , b, c) ∈ p(x)] .

‘Realize q and then realize p.’

Associative.

p, q finitely satisfiable ⇒ p ⊗ q finitely satisfiable.

p, q definable ⇒ p ⊗ q definable.

p definable and q finitely satisfiable ⇒ p ⊗ q = q ⊗ p.
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Nice Types

Definition

Given an A-invariant type p(x) and B ⊇ A, a Morley sequence in p over B
(indexed by ω) is a realization of the type

⊗p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p ⊗ p︸ ︷︷ ︸
ω times

restricted to B.

Invariant type p is generically stable if no Morley sequence in p witnesses
the order property.

Generically stable types are dfs.

There is one known examples of dfs types that are not generically
stable. Henson graph: ‘I’m not connected to anything.’
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Keisler Measures

Definition

A Keisler measure µ(x) on the variables x is a finitely additive probability
measure on the Boolean algebra of formulas in x (possibly over
parameters).

Introduced by Keisler to study forking in NIP theories.

Generalization of types: For a type p(x), δp(x) defined by setting
δp(ϕ(x)) = 1 if ϕ(x) ∈ p(x) and 0 otherwise.

Same thing as regular Borel measures on type space.

Natural example: The ultraproduct of the normalized counting
measures in a pseudo-finite structure.

Measures over the parameters A correspond to types in the
randomization of TA.

Played an essential role in resolving the Pillay conjectures.

An o-minimal theory has no non-trivial dfs types but does have
non-trivial dfs measures.
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Invariant Measures

Definition

A global measure µ(x) is A-invariant if for any ϕ(x , b) and any two tuples
b, c with b ≡A c ,

µ(ϕ(x , b)) = µ(ϕ(x , c)).

Fiber Functions: Given an A-invariant measure µ, let Fϕµ : Sy (A)→ [0, 1]
be the function that satisfies Fϕµ (q) = µ(ϕ(x , b)) for any b |= q.

Definition

Given two A-invariant measures µ(x) and ν(y), the Morley product of µ
and ν, written µ⊗ ν(x , y) is the unique A-invariant measure satisfying

µ⊗ ν(ϕ(x , y , c)) =

∫
Sy (Ac)

Fϕ(x ,y ,c)µ dν(y),

assuming such a measure exists.
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Nice Measures I

µ(x) is A-definable if each Fϕµ is continuous (i.e. is definable in the
sense of continuous logic).

µ(x) is A–Borel definable if each Fϕµ is Borel measurable.

µ(x) is A–finitely satisfiable if for any formula ϕ(x) with µ(ϕ(x)) > 0,
there is a ∈ A such that ϕ(a) holds.

There is a slightly technical generalization of generic stability to
measures called fim (frequency interpretation measure). fim measures
are always dfs.

Example in any o-minimal theory:

λ = Lebesgue Measure

0 1
Monster

There is also an intermediate property (which is non-trivial for
types)...
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Nice Measures II

Definition

A measure µ(x) is fam (finitely approximated measure) if there is some
small model M such that for any formula ϕ(x , y) and any ε > 0, there are
ā ∈ (Mx)n such that ∣∣∣∣∣µ(ϕ(x , b))− 1

n

∑
i<n

ϕ(ai , b)

∣∣∣∣∣ < ε

for all b in the monster.

We say that p is fam if δp is fam. In general,

dfs⇐ fam⇐ fim.

In NIP theories, dfs measures are always fim. (Hrushovski, Pillay, Simon)
The type in the Henson graph is fam but not fim/generically stable (uses
Erdös-Rogers).
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Questions and Some Answers

We know that fam measures are not always fim, but are dfs measures
always fam? dfs types?

Does the Morley product of definable and finitely satisfiable measures
commute?

In general, is the Morley product of measures associative? (Assumed
implicitly in literature.)

Is the Morley product of Borel definable measures always Borel
definable?

Theorems (Conant, Gannon, H.)

Over uncountable models of non-NIP theories, the Morley product of
Borel definable measures may fail to be Borel definable and the Morley
product of measures may fail to be associative (even when all products are
Borel definable).
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Half-Full of Half-Opens
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dfs, ¬fam is Hard

S
ta

b
le
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N
S

O
P

In NIP, dfs types and measures are fim.

Theorem (Conant, Gannon)

Any theory defining a random graph edge relation on its home sort has no
non-trivial dfs types or measures.

Rules out theories that are too tame (NIP) and theories that are too rich
(PA, ZFC).
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First Attempt

A dfs but not fam type or measure must have something to do with a
failure of the dominated convergence theorem for nets.

Let H be the Boolean algebra of subsets of [0, 1) generated by
intervals [a, b).

Let H1/2 be the collection of elements of H with Lebesgue measure 1
2 .

Consider 2[0,1) with the compact product topology. [0, 1) is in the
closure of H1/2 but has measure 1.

[ )

M1/2 = ([0, 1),H1/2,∈) gives a local example of a dfs type that is not fam:
The ∈-type q(y) saying that every element of the [0, 1)-sort is in y is dfs.

M1/2 interprets a Boolean algebra (H).
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Second Attempt

Embrace the Boolean algebra.

Expand the structure M = ([0, 1),H,∈) to
have measure information:

Add a sort for (R,+, 0, 1, <) and a measure function ` from H to R.
(Could also pass to continuous logic.)

The (partial) type q(y) in the H-sort of a new element that says “y
contains every element of [0, 1)U , y is independent of every b ∈ HU ,
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Third Time’s a Charm

Back off from the Boolean algebra a little bit.

Pass to [0, 1)ω, and
consider sets that are only non-trivial along one coordinate:

[ )

[
)

Three-sorted structure structure:

The point of all this structure is to get QE, but this structure doesn’t
actually have QE.
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Third Fourth Time’s a Charm

Find a dense set P ⊂ [0, 1)ω with the property that for any distinct
α, β ∈ P and any k < ω, α(k) 6= β(k).

(Q,⊥,>,u,t,c ,∼) (R, 0, 1,+, <)
@− `

P Q R

M∞
1/2

:=

Theorem (Conant, Gannon, H.)

T∞
1/2

:= Th(M∞
1/2) has quantifier elimination.
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QE Proof (Sketch)

Lemma

The restriction of T∞
1/2 to the sorts P and Q is ω-categorical and has QE.

Proof of Lemma.

T∞
1/2 |PQ is a Fräıssé limit of ‘disjoint unions of Boolean algebras with

elements.’

Fact

Th(R, 0, 1,+, <) has QE.

Proof of Theorem.

P quantifiers can be eliminated by the lemma. R quantifiers can be
eliminated by the fact. Q quantifiers can be reduced to R quantifiers by
the lemma and the fact.
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q1/2

Definition

Let q1/2(y) be the type in the Q sort axiomatized by

a @− y for all a ∈ P(U),
y 6∼ b for all b ∈ Q(U),

`(y) = 1
2 .

Complete, definable type by QE.

Finitely satisfiable in M∞
1/2 (therefore consistent).
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¬fam

Proposition (Conant, Gannon, H.)

q1/2(y) is not fam.

Proof.

Since q1/2 is ∅-invariant, sufficient to check over M∞
1/2.

Let {bi}i<n be any sequence of elements of Q.

Show that it fails to approximate ϕ(x , y) := x @− y ∧ `(y) = 1
2 .

May assume that for each i < n, `(bi ) = 1
2 .

Let f (x) = 1
n

∑
i<n 1bi (x) (function on [0, 1)ω).

Let λω be the product Lebesgue measure on [0, 1)ω.∫
fdλω = 1

2 , so there is open subset U of [0, 1)ω in which f is
uniformly ≤ 1

2 . Pick a ∈ U ∩ P.

{bi}i<n fails to approximate the behavior of ϕ(a, y).
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Let λω be the product Lebesgue measure on [0, 1)ω.∫
fdλω = 1

2 , so there is open subset U of [0, 1)ω in which f is
uniformly ≤ 1

2 . Pick a ∈ U ∩ P.

{bi}i<n fails to approximate the behavior of ϕ(a, y).
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But Wait, There’s More
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New Example of fam, ¬Generically Stable

Let qPQ = q1/2|PQ (reduct to sorts P and Q).

Clearly not generically stable: A Morley sequence in qPQ is an infinite
pairwise ∼-inequivalent sequence of elements of Q \ {⊥,>}. Any such
sequence witnesses the independence property with x @− y .

Proposition (Conant, Gannon, H.)

qPQ is fam.

Proof by example picture.
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Commutativity: The Uniform Measure on P

By QE, every definable subset of P differs by at most finitely many
elements from a Boolean combination of sets of the form x @− b for some
b ∈ Q.

In M∞
1/2, there is a natural measure on Boolean combinations of

sets of the form x @− b, specifically the Lebesgue measure (thinking of
these as subsets of [0, 1)ω).

Lemma

There is a unique definable measure µ(x) extending this measure.

Think of µ as randomly picking an element of P with each ‘coordinate’
distributed independently according to `.
For example, if b, c , d are pairwise ∼-inequivalent, then

µ(x @− b ∧ x @− c ∧ x @− d) = st(`(b)`(c)`(d)),

where st is the standard part map.
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Failure of Commutativity

Proposition (Conant, Gannon, H.)

µ⊗ q1/2(x , y) 6= q1/2 ⊗ µ(x , y).

Proof.

Consider the formula x @− y .
q1/2 ⊗ µ(x @− y) is 1, but µ⊗ q1/2(x @− y) is 1

2 .

In particular, there are a dfs type and a definable measure that do not
commute.
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Some Remaining Questions

Is there a dfs, not fam type in a simple theory?

An NSOP theory?
An NTP2 theory?

Do any two dfs measures commute?
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Thank you
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